| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fadd.1 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 2 |  | i1fadd.2 | ⊢ ( 𝜑  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 3 |  | itg1add.3 | ⊢ 𝐼  =  ( 𝑖  ∈  ℝ ,  𝑗  ∈  ℝ  ↦  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) ) ) | 
						
							| 4 |  | iffalse | ⊢ ( ¬  ( 𝑖  =  0  ∧  𝑗  =  0 )  →  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  ¬  ( 𝑖  =  0  ∧  𝑗  =  0 ) )  →  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) ) | 
						
							| 6 |  | i1fima | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ◡ 𝐹  “  { 𝑖 } )  ∈  dom  vol ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  { 𝑖 } )  ∈  dom  vol ) | 
						
							| 8 |  | i1fima | ⊢ ( 𝐺  ∈  dom  ∫1  →  ( ◡ 𝐺  “  { 𝑗 } )  ∈  dom  vol ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  { 𝑗 } )  ∈  dom  vol ) | 
						
							| 10 |  | inmbl | ⊢ ( ( ( ◡ 𝐹  “  { 𝑖 } )  ∈  dom  vol  ∧  ( ◡ 𝐺  “  { 𝑗 } )  ∈  dom  vol )  →  ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) )  ∈  dom  vol ) | 
						
							| 11 | 7 9 10 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) )  ∈  dom  vol ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  ¬  ( 𝑖  =  0  ∧  𝑗  =  0 ) )  →  ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) )  ∈  dom  vol ) | 
						
							| 13 |  | mblvol | ⊢ ( ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) )  ∈  dom  vol  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) )  =  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  ¬  ( 𝑖  =  0  ∧  𝑗  =  0 ) )  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) )  =  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) ) | 
						
							| 15 | 5 14 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  ¬  ( 𝑖  =  0  ∧  𝑗  =  0 ) )  →  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  =  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) ) | 
						
							| 16 |  | neorian | ⊢ ( ( 𝑖  ≠  0  ∨  𝑗  ≠  0 )  ↔  ¬  ( 𝑖  =  0  ∧  𝑗  =  0 ) ) | 
						
							| 17 |  | inss1 | ⊢ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) )  ⊆  ( ◡ 𝐹  “  { 𝑖 } ) | 
						
							| 18 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  ( ◡ 𝐹  “  { 𝑖 } )  ∈  dom  vol ) | 
						
							| 19 |  | mblss | ⊢ ( ( ◡ 𝐹  “  { 𝑖 } )  ∈  dom  vol  →  ( ◡ 𝐹  “  { 𝑖 } )  ⊆  ℝ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  ( ◡ 𝐹  “  { 𝑖 } )  ⊆  ℝ ) | 
						
							| 21 |  | mblvol | ⊢ ( ( ◡ 𝐹  “  { 𝑖 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑖 } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { 𝑖 } ) ) ) | 
						
							| 22 | 18 21 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑖 } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { 𝑖 } ) ) ) | 
						
							| 23 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 24 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  𝑖  ∈  ℝ ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  𝑖  ≠  0 ) | 
						
							| 26 |  | eldifsn | ⊢ ( 𝑖  ∈  ( ℝ  ∖  { 0 } )  ↔  ( 𝑖  ∈  ℝ  ∧  𝑖  ≠  0 ) ) | 
						
							| 27 | 24 25 26 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  𝑖  ∈  ( ℝ  ∖  { 0 } ) ) | 
						
							| 28 |  | i1fima2sn | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑖  ∈  ( ℝ  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑖 } ) )  ∈  ℝ ) | 
						
							| 29 | 23 27 28 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑖 } ) )  ∈  ℝ ) | 
						
							| 30 | 22 29 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  ( vol* ‘ ( ◡ 𝐹  “  { 𝑖 } ) )  ∈  ℝ ) | 
						
							| 31 |  | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) )  ⊆  ( ◡ 𝐹  “  { 𝑖 } )  ∧  ( ◡ 𝐹  “  { 𝑖 } )  ⊆  ℝ  ∧  ( vol* ‘ ( ◡ 𝐹  “  { 𝑖 } ) )  ∈  ℝ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) )  ∈  ℝ ) | 
						
							| 32 | 17 20 30 31 | mp3an2i | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑖  ≠  0 )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) )  ∈  ℝ ) | 
						
							| 33 |  | inss2 | ⊢ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑗 } ) | 
						
							| 34 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 35 | 34 8 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  ( ◡ 𝐺  “  { 𝑗 } )  ∈  dom  vol ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  ( ◡ 𝐺  “  { 𝑗 } )  ∈  dom  vol ) | 
						
							| 37 |  | mblss | ⊢ ( ( ◡ 𝐺  “  { 𝑗 } )  ∈  dom  vol  →  ( ◡ 𝐺  “  { 𝑗 } )  ⊆  ℝ ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  ( ◡ 𝐺  “  { 𝑗 } )  ⊆  ℝ ) | 
						
							| 39 |  | mblvol | ⊢ ( ( ◡ 𝐺  “  { 𝑗 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑗 } ) )  =  ( vol* ‘ ( ◡ 𝐺  “  { 𝑗 } ) ) ) | 
						
							| 40 | 36 39 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑗 } ) )  =  ( vol* ‘ ( ◡ 𝐺  “  { 𝑗 } ) ) ) | 
						
							| 41 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 42 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  𝑗  ∈  ℝ ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  𝑗  ≠  0 ) | 
						
							| 44 |  | eldifsn | ⊢ ( 𝑗  ∈  ( ℝ  ∖  { 0 } )  ↔  ( 𝑗  ∈  ℝ  ∧  𝑗  ≠  0 ) ) | 
						
							| 45 | 42 43 44 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  𝑗  ∈  ( ℝ  ∖  { 0 } ) ) | 
						
							| 46 |  | i1fima2sn | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  𝑗  ∈  ( ℝ  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑗 } ) )  ∈  ℝ ) | 
						
							| 47 | 41 45 46 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑗 } ) )  ∈  ℝ ) | 
						
							| 48 | 40 47 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  ( vol* ‘ ( ◡ 𝐺  “  { 𝑗 } ) )  ∈  ℝ ) | 
						
							| 49 |  | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑗 } )  ∧  ( ◡ 𝐺  “  { 𝑗 } )  ⊆  ℝ  ∧  ( vol* ‘ ( ◡ 𝐺  “  { 𝑗 } ) )  ∈  ℝ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) )  ∈  ℝ ) | 
						
							| 50 | 33 38 48 49 | mp3an2i | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  𝑗  ≠  0 )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) )  ∈  ℝ ) | 
						
							| 51 | 32 50 | jaodan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  ( 𝑖  ≠  0  ∨  𝑗  ≠  0 ) )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) )  ∈  ℝ ) | 
						
							| 52 | 16 51 | sylan2br | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  ¬  ( 𝑖  =  0  ∧  𝑗  =  0 ) )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) )  ∈  ℝ ) | 
						
							| 53 | 15 52 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  ∧  ¬  ( 𝑖  =  0  ∧  𝑗  =  0 ) )  →  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  ∈  ℝ ) | 
						
							| 54 | 53 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  ( ¬  ( 𝑖  =  0  ∧  𝑗  =  0 )  →  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  ∈  ℝ ) ) | 
						
							| 55 |  | iftrue | ⊢ ( ( 𝑖  =  0  ∧  𝑗  =  0 )  →  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  =  0 ) | 
						
							| 56 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 57 | 55 56 | eqeltrdi | ⊢ ( ( 𝑖  =  0  ∧  𝑗  =  0 )  →  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  ∈  ℝ ) | 
						
							| 58 | 54 57 | pm2.61d2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  ∈  ℝ ) | 
						
							| 59 | 58 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ℝ ∀ 𝑗  ∈  ℝ if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  ∈  ℝ ) | 
						
							| 60 | 3 | fmpo | ⊢ ( ∀ 𝑖  ∈  ℝ ∀ 𝑗  ∈  ℝ if ( ( 𝑖  =  0  ∧  𝑗  =  0 ) ,  0 ,  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑖 } )  ∩  ( ◡ 𝐺  “  { 𝑗 } ) ) ) )  ∈  ℝ  ↔  𝐼 : ( ℝ  ×  ℝ ) ⟶ ℝ ) | 
						
							| 61 | 59 60 | sylib | ⊢ ( 𝜑  →  𝐼 : ( ℝ  ×  ℝ ) ⟶ ℝ ) |