| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
| 2 |
|
i1fadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) |
| 3 |
|
itg1add.3 |
⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) |
| 4 |
|
itg1add.4 |
⊢ 𝑃 = ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) |
| 5 |
1 2
|
i1fadd |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ) |
| 6 |
|
ax-addf |
⊢ + : ( ℂ × ℂ ) ⟶ ℂ |
| 7 |
|
ffn |
⊢ ( + : ( ℂ × ℂ ) ⟶ ℂ → + Fn ( ℂ × ℂ ) ) |
| 8 |
6 7
|
ax-mp |
⊢ + Fn ( ℂ × ℂ ) |
| 9 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 11 |
|
i1frn |
⊢ ( 𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
| 13 |
|
xpfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
| 14 |
10 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
| 15 |
|
resfnfinfin |
⊢ ( ( + Fn ( ℂ × ℂ ) ∧ ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) → ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
| 16 |
8 14 15
|
sylancr |
⊢ ( 𝜑 → ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
| 17 |
4 16
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ Fin ) |
| 18 |
|
rnfi |
⊢ ( 𝑃 ∈ Fin → ran 𝑃 ∈ Fin ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ran 𝑃 ∈ Fin ) |
| 20 |
|
difss |
⊢ ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 |
| 21 |
|
ssfi |
⊢ ( ( ran 𝑃 ∈ Fin ∧ ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 ) → ( ran 𝑃 ∖ { 0 } ) ∈ Fin ) |
| 22 |
19 20 21
|
sylancl |
⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ∈ Fin ) |
| 23 |
|
ffun |
⊢ ( + : ( ℂ × ℂ ) ⟶ ℂ → Fun + ) |
| 24 |
6 23
|
ax-mp |
⊢ Fun + |
| 25 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 26 |
1 25
|
syl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 27 |
26
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 28 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 29 |
27 28
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
| 30 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
| 31 |
2 30
|
syl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 32 |
31
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ ℝ ) |
| 33 |
32 28
|
sstrdi |
⊢ ( 𝜑 → ran 𝐺 ⊆ ℂ ) |
| 34 |
|
xpss12 |
⊢ ( ( ran 𝐹 ⊆ ℂ ∧ ran 𝐺 ⊆ ℂ ) → ( ran 𝐹 × ran 𝐺 ) ⊆ ( ℂ × ℂ ) ) |
| 35 |
29 33 34
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ⊆ ( ℂ × ℂ ) ) |
| 36 |
6
|
fdmi |
⊢ dom + = ( ℂ × ℂ ) |
| 37 |
35 36
|
sseqtrrdi |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) |
| 38 |
|
funfvima2 |
⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
| 39 |
24 37 38
|
sylancr |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
| 40 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) ) |
| 41 |
39 40
|
impel |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) |
| 42 |
|
df-ov |
⊢ ( 𝑥 + 𝑦 ) = ( + ‘ 〈 𝑥 , 𝑦 〉 ) |
| 43 |
4
|
rneqi |
⊢ ran 𝑃 = ran ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) |
| 44 |
|
df-ima |
⊢ ( + “ ( ran 𝐹 × ran 𝐺 ) ) = ran ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) |
| 45 |
43 44
|
eqtr4i |
⊢ ran 𝑃 = ( + “ ( ran 𝐹 × ran 𝐺 ) ) |
| 46 |
41 42 45
|
3eltr4g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 + 𝑦 ) ∈ ran 𝑃 ) |
| 47 |
26
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 48 |
|
dffn3 |
⊢ ( 𝐹 Fn ℝ ↔ 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 49 |
47 48
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 50 |
31
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 51 |
|
dffn3 |
⊢ ( 𝐺 Fn ℝ ↔ 𝐺 : ℝ ⟶ ran 𝐺 ) |
| 52 |
50 51
|
sylib |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ran 𝐺 ) |
| 53 |
|
reex |
⊢ ℝ ∈ V |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 55 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 56 |
46 49 52 54 54 55
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ ran 𝑃 ) |
| 57 |
56
|
frnd |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ran 𝑃 ) |
| 58 |
57
|
ssdifd |
⊢ ( 𝜑 → ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ⊆ ( ran 𝑃 ∖ { 0 } ) ) |
| 59 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 60 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 61 |
59 60
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) |
| 62 |
|
readdcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 64 |
63
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 65 |
|
funimassov |
⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ↔ ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) ) |
| 66 |
24 37 65
|
sylancr |
⊢ ( 𝜑 → ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ↔ ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) ) |
| 67 |
64 66
|
mpbird |
⊢ ( 𝜑 → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ) |
| 68 |
45 67
|
eqsstrid |
⊢ ( 𝜑 → ran 𝑃 ⊆ ℝ ) |
| 69 |
68
|
ssdifd |
⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ⊆ ( ℝ ∖ { 0 } ) ) |
| 70 |
|
itg1val2 |
⊢ ( ( ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ∧ ( ( ran 𝑃 ∖ { 0 } ) ∈ Fin ∧ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ⊆ ( ran 𝑃 ∖ { 0 } ) ∧ ( ran 𝑃 ∖ { 0 } ) ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) ) |
| 71 |
5 22 58 69 70
|
syl13anc |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) ) |
| 72 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝐺 : ℝ ⟶ ℝ ) |
| 73 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ran 𝐺 ∈ Fin ) |
| 74 |
|
inss2 |
⊢ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) |
| 75 |
74
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) ) |
| 76 |
|
i1fima |
⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ) |
| 77 |
1 76
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ) |
| 78 |
|
i1fima |
⊢ ( 𝐺 ∈ dom ∫1 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 79 |
2 78
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 80 |
|
inmbl |
⊢ ( ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ∧ ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 81 |
77 79 80
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 82 |
81
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 83 |
20 68
|
sstrid |
⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ⊆ ℝ ) |
| 84 |
83
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ ℝ ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ∈ ℝ ) |
| 86 |
60
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 87 |
85 86
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑤 − 𝑧 ) ∈ ℝ ) |
| 88 |
85
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ∈ ℂ ) |
| 89 |
86
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℂ ) |
| 90 |
88 89
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 𝑤 ) |
| 91 |
|
eldifsni |
⊢ ( 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) → 𝑤 ≠ 0 ) |
| 92 |
91
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ≠ 0 ) |
| 93 |
90 92
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) ≠ 0 ) |
| 94 |
|
oveq12 |
⊢ ( ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = ( 0 + 0 ) ) |
| 95 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 96 |
94 95
|
eqtrdi |
⊢ ( ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 0 ) |
| 97 |
96
|
necon3ai |
⊢ ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) ≠ 0 → ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) |
| 98 |
93 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) |
| 99 |
1 2 3
|
itg1addlem3 |
⊢ ( ( ( ( 𝑤 − 𝑧 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 100 |
87 86 98 99
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 101 |
1 2 3
|
itg1addlem2 |
⊢ ( 𝜑 → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 102 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 103 |
102 87 86
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℝ ) |
| 104 |
100 103
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 105 |
72 73 75 82 104
|
itg1addlem1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = Σ 𝑧 ∈ ran 𝐺 ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 106 |
84
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ ℂ ) |
| 107 |
1 2
|
i1faddlem |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 108 |
106 107
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 109 |
108
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) = ( vol ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 110 |
100
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = Σ 𝑧 ∈ ran 𝐺 ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 111 |
105 109 110
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) = Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) |
| 112 |
111
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = ( 𝑤 · Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 113 |
103
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℂ ) |
| 114 |
73 106 113
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 115 |
112 114
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 116 |
115
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 117 |
88 113
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
| 118 |
117
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
| 119 |
22 12 118
|
fsumcom |
⊢ ( 𝜑 → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 120 |
71 116 119
|
3eqtrd |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 121 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( 𝑦 + 𝑧 ) = ( ( 𝑤 − 𝑧 ) + 𝑧 ) ) |
| 122 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( 𝑦 𝐼 𝑧 ) = ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) |
| 123 |
121 122
|
oveq12d |
⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 124 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝑃 ∈ Fin ) |
| 125 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝑃 ⊆ ℝ ) |
| 126 |
125
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑣 ∈ ℝ ) |
| 127 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑧 ∈ ℝ ) |
| 128 |
126 127
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → ( 𝑣 − 𝑧 ) ∈ ℝ ) |
| 129 |
128
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 → ( 𝑣 − 𝑧 ) ∈ ℝ ) ) |
| 130 |
126
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑣 ∈ ℂ ) |
| 131 |
130
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑣 ∈ ℂ ) |
| 132 |
68
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) → 𝑦 ∈ ℝ ) |
| 133 |
132
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑦 ∈ ℝ ) |
| 134 |
133
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑦 ∈ ℂ ) |
| 135 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℂ ) |
| 136 |
135
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑧 ∈ ℂ ) |
| 137 |
131 134 136
|
subcan2ad |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → ( ( 𝑣 − 𝑧 ) = ( 𝑦 − 𝑧 ) ↔ 𝑣 = 𝑦 ) ) |
| 138 |
137
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) → ( ( 𝑣 − 𝑧 ) = ( 𝑦 − 𝑧 ) ↔ 𝑣 = 𝑦 ) ) ) |
| 139 |
129 138
|
dom2lem |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ ) |
| 140 |
|
f1f1orn |
⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
| 141 |
139 140
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
| 142 |
|
oveq1 |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 − 𝑧 ) = ( 𝑤 − 𝑧 ) ) |
| 143 |
|
eqid |
⊢ ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) = ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) |
| 144 |
|
ovex |
⊢ ( 𝑤 − 𝑧 ) ∈ V |
| 145 |
142 143 144
|
fvmpt |
⊢ ( 𝑤 ∈ ran 𝑃 → ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ‘ 𝑤 ) = ( 𝑤 − 𝑧 ) ) |
| 146 |
145
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ‘ 𝑤 ) = ( 𝑤 − 𝑧 ) ) |
| 147 |
|
f1f |
⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 ⟶ ℝ ) |
| 148 |
|
frn |
⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 ⟶ ℝ → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ⊆ ℝ ) |
| 149 |
139 147 148
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ⊆ ℝ ) |
| 150 |
149
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝑦 ∈ ℝ ) |
| 151 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝑧 ∈ ℝ ) |
| 152 |
150 151
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 153 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 154 |
153 150 151
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 155 |
152 154
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℝ ) |
| 156 |
155
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 157 |
123 124 141 146 156
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 158 |
125
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑤 ∈ ℝ ) |
| 159 |
158
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑤 ∈ ℂ ) |
| 160 |
135
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑧 ∈ ℂ ) |
| 161 |
159 160
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 𝑤 ) |
| 162 |
161
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 163 |
162
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑤 ∈ ran 𝑃 ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 164 |
157 163
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 165 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) |
| 166 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ran 𝐹 ) |
| 167 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ran 𝐺 ) |
| 168 |
166 167
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) ) |
| 169 |
|
funfvima2 |
⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
| 170 |
24 169
|
mpan |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ⊆ dom + → ( 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
| 171 |
165 168 170
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) |
| 172 |
|
df-ov |
⊢ ( 𝑦 + 𝑧 ) = ( + ‘ 〈 𝑦 , 𝑧 〉 ) |
| 173 |
171 172 45
|
3eltr4g |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 + 𝑧 ) ∈ ran 𝑃 ) |
| 174 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 175 |
174
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℂ ) |
| 176 |
135
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℂ ) |
| 177 |
175 176
|
pncand |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) − 𝑧 ) = 𝑦 ) |
| 178 |
177
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) |
| 179 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑦 + 𝑧 ) → ( 𝑣 − 𝑧 ) = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) |
| 180 |
179
|
rspceeqv |
⊢ ( ( ( 𝑦 + 𝑧 ) ∈ ran 𝑃 ∧ 𝑦 = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) → ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
| 181 |
173 178 180
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
| 182 |
181
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ∀ 𝑦 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
| 183 |
|
ssabral |
⊢ ( ran 𝐹 ⊆ { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } ↔ ∀ 𝑦 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
| 184 |
182 183
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝐹 ⊆ { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } ) |
| 185 |
143
|
rnmpt |
⊢ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) = { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } |
| 186 |
184 185
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝐹 ⊆ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
| 187 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℝ ) |
| 188 |
174 187
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 189 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 190 |
189 174 187
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 191 |
188 190
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℝ ) |
| 192 |
191
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 193 |
149
|
ssdifd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ⊆ ( ℝ ∖ ran 𝐹 ) ) |
| 194 |
193
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ) → 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) |
| 195 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 196 |
195
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → 𝑦 ∈ ℝ ) |
| 197 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → 𝑧 ∈ ℝ ) |
| 198 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) |
| 199 |
1 2 3
|
itg1addlem3 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 200 |
196 197 198 199
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 201 |
|
inss1 |
⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) |
| 202 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) → ¬ 𝑦 ∈ ran 𝐹 ) |
| 203 |
202
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ 𝑦 ∈ ran 𝐹 ) |
| 204 |
|
vex |
⊢ 𝑣 ∈ V |
| 205 |
204
|
eliniseg |
⊢ ( 𝑦 ∈ V → ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ 𝑣 𝐹 𝑦 ) ) |
| 206 |
205
|
elv |
⊢ ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ 𝑣 𝐹 𝑦 ) |
| 207 |
|
vex |
⊢ 𝑦 ∈ V |
| 208 |
204 207
|
brelrn |
⊢ ( 𝑣 𝐹 𝑦 → 𝑦 ∈ ran 𝐹 ) |
| 209 |
206 208
|
sylbi |
⊢ ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) → 𝑦 ∈ ran 𝐹 ) |
| 210 |
203 209
|
nsyl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) |
| 211 |
210
|
pm2.21d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) → 𝑣 ∈ ∅ ) ) |
| 212 |
211
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ∅ ) |
| 213 |
201 212
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ∅ ) |
| 214 |
|
ss0 |
⊢ ( ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ∅ → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ∅ ) |
| 215 |
213 214
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ∅ ) |
| 216 |
215
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = ( vol ‘ ∅ ) ) |
| 217 |
|
0mbl |
⊢ ∅ ∈ dom vol |
| 218 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
| 219 |
217 218
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 220 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
| 221 |
219 220
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
| 222 |
216 221
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = 0 ) |
| 223 |
200 222
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 𝐼 𝑧 ) = 0 ) |
| 224 |
223
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( ( 𝑦 + 𝑧 ) · 0 ) ) |
| 225 |
196 197
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 226 |
225
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℂ ) |
| 227 |
226
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · 0 ) = 0 ) |
| 228 |
224 227
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 229 |
228
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) → ( ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) ) |
| 230 |
|
oveq12 |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 + 𝑧 ) = ( 0 + 0 ) ) |
| 231 |
230 95
|
eqtrdi |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 + 𝑧 ) = 0 ) |
| 232 |
|
oveq12 |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 𝐼 𝑧 ) = ( 0 𝐼 0 ) ) |
| 233 |
|
0re |
⊢ 0 ∈ ℝ |
| 234 |
|
iftrue |
⊢ ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) = 0 ) |
| 235 |
|
c0ex |
⊢ 0 ∈ V |
| 236 |
234 3 235
|
ovmpoa |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 0 𝐼 0 ) = 0 ) |
| 237 |
233 233 236
|
mp2an |
⊢ ( 0 𝐼 0 ) = 0 |
| 238 |
232 237
|
eqtrdi |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 𝐼 𝑧 ) = 0 ) |
| 239 |
231 238
|
oveq12d |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( 0 · 0 ) ) |
| 240 |
|
0cn |
⊢ 0 ∈ ℂ |
| 241 |
240
|
mul01i |
⊢ ( 0 · 0 ) = 0 |
| 242 |
239 241
|
eqtrdi |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 243 |
229 242
|
pm2.61d2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 244 |
194 243
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 245 |
|
f1ofo |
⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
| 246 |
141 245
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
| 247 |
|
fofi |
⊢ ( ( ran 𝑃 ∈ Fin ∧ ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∈ Fin ) |
| 248 |
124 246 247
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∈ Fin ) |
| 249 |
186 192 244 248
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |
| 250 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 ) |
| 251 |
117
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
| 252 |
|
dfin4 |
⊢ ( ran 𝑃 ∩ { 0 } ) = ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) |
| 253 |
|
inss2 |
⊢ ( ran 𝑃 ∩ { 0 } ) ⊆ { 0 } |
| 254 |
252 253
|
eqsstrri |
⊢ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) ⊆ { 0 } |
| 255 |
254
|
sseli |
⊢ ( 𝑤 ∈ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ { 0 } ) |
| 256 |
|
elsni |
⊢ ( 𝑤 ∈ { 0 } → 𝑤 = 0 ) |
| 257 |
256
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑤 = 0 ) |
| 258 |
257
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = ( 0 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 259 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 260 |
257 233
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑤 ∈ ℝ ) |
| 261 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑧 ∈ ℝ ) |
| 262 |
260 261
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 − 𝑧 ) ∈ ℝ ) |
| 263 |
259 262 261
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℝ ) |
| 264 |
263
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℂ ) |
| 265 |
264
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 0 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
| 266 |
258 265
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
| 267 |
255 266
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
| 268 |
250 251 267 124
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 269 |
164 249 268
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 270 |
269
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑧 ∈ ran 𝐺 Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 271 |
192
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 272 |
12 10 271
|
fsumcom |
⊢ ( 𝜑 → Σ 𝑧 ∈ ran 𝐺 Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |
| 273 |
120 270 272
|
3eqtr2d |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |