Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
2 |
|
i1fadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) |
3 |
|
itg1add.3 |
⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) |
4 |
|
itg1add.4 |
⊢ 𝑃 = ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) |
5 |
1 2
|
i1fadd |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ) |
6 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
8 |
|
i1frn |
⊢ ( 𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
10 |
|
xpfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
11 |
7 9 10
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
12 |
|
ax-addf |
⊢ + : ( ℂ × ℂ ) ⟶ ℂ |
13 |
|
ffn |
⊢ ( + : ( ℂ × ℂ ) ⟶ ℂ → + Fn ( ℂ × ℂ ) ) |
14 |
12 13
|
ax-mp |
⊢ + Fn ( ℂ × ℂ ) |
15 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
17 |
16
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
18 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
19 |
17 18
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
20 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
22 |
21
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ ℝ ) |
23 |
22 18
|
sstrdi |
⊢ ( 𝜑 → ran 𝐺 ⊆ ℂ ) |
24 |
|
xpss12 |
⊢ ( ( ran 𝐹 ⊆ ℂ ∧ ran 𝐺 ⊆ ℂ ) → ( ran 𝐹 × ran 𝐺 ) ⊆ ( ℂ × ℂ ) ) |
25 |
19 23 24
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ⊆ ( ℂ × ℂ ) ) |
26 |
|
fnssres |
⊢ ( ( + Fn ( ℂ × ℂ ) ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ ( ℂ × ℂ ) ) → ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) Fn ( ran 𝐹 × ran 𝐺 ) ) |
27 |
14 25 26
|
sylancr |
⊢ ( 𝜑 → ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) Fn ( ran 𝐹 × ran 𝐺 ) ) |
28 |
4
|
fneq1i |
⊢ ( 𝑃 Fn ( ran 𝐹 × ran 𝐺 ) ↔ ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) Fn ( ran 𝐹 × ran 𝐺 ) ) |
29 |
27 28
|
sylibr |
⊢ ( 𝜑 → 𝑃 Fn ( ran 𝐹 × ran 𝐺 ) ) |
30 |
|
dffn4 |
⊢ ( 𝑃 Fn ( ran 𝐹 × ran 𝐺 ) ↔ 𝑃 : ( ran 𝐹 × ran 𝐺 ) –onto→ ran 𝑃 ) |
31 |
29 30
|
sylib |
⊢ ( 𝜑 → 𝑃 : ( ran 𝐹 × ran 𝐺 ) –onto→ ran 𝑃 ) |
32 |
|
fofi |
⊢ ( ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ∧ 𝑃 : ( ran 𝐹 × ran 𝐺 ) –onto→ ran 𝑃 ) → ran 𝑃 ∈ Fin ) |
33 |
11 31 32
|
syl2anc |
⊢ ( 𝜑 → ran 𝑃 ∈ Fin ) |
34 |
|
difss |
⊢ ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 |
35 |
|
ssfi |
⊢ ( ( ran 𝑃 ∈ Fin ∧ ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 ) → ( ran 𝑃 ∖ { 0 } ) ∈ Fin ) |
36 |
33 34 35
|
sylancl |
⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ∈ Fin ) |
37 |
|
ffun |
⊢ ( + : ( ℂ × ℂ ) ⟶ ℂ → Fun + ) |
38 |
12 37
|
ax-mp |
⊢ Fun + |
39 |
12
|
fdmi |
⊢ dom + = ( ℂ × ℂ ) |
40 |
25 39
|
sseqtrrdi |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) |
41 |
|
funfvima2 |
⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
42 |
38 40 41
|
sylancr |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
43 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) ) |
44 |
42 43
|
impel |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) |
45 |
|
df-ov |
⊢ ( 𝑥 + 𝑦 ) = ( + ‘ 〈 𝑥 , 𝑦 〉 ) |
46 |
4
|
rneqi |
⊢ ran 𝑃 = ran ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) |
47 |
|
df-ima |
⊢ ( + “ ( ran 𝐹 × ran 𝐺 ) ) = ran ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) |
48 |
46 47
|
eqtr4i |
⊢ ran 𝑃 = ( + “ ( ran 𝐹 × ran 𝐺 ) ) |
49 |
44 45 48
|
3eltr4g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 + 𝑦 ) ∈ ran 𝑃 ) |
50 |
16
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
51 |
|
dffn3 |
⊢ ( 𝐹 Fn ℝ ↔ 𝐹 : ℝ ⟶ ran 𝐹 ) |
52 |
50 51
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ran 𝐹 ) |
53 |
21
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
54 |
|
dffn3 |
⊢ ( 𝐺 Fn ℝ ↔ 𝐺 : ℝ ⟶ ran 𝐺 ) |
55 |
53 54
|
sylib |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ran 𝐺 ) |
56 |
|
reex |
⊢ ℝ ∈ V |
57 |
56
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
58 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
59 |
49 52 55 57 57 58
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ ran 𝑃 ) |
60 |
59
|
frnd |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ran 𝑃 ) |
61 |
60
|
ssdifd |
⊢ ( 𝜑 → ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ⊆ ( ran 𝑃 ∖ { 0 } ) ) |
62 |
17
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
63 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
64 |
62 63
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) |
65 |
|
readdcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
66 |
64 65
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
67 |
66
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) |
68 |
|
funimassov |
⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ↔ ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) ) |
69 |
38 40 68
|
sylancr |
⊢ ( 𝜑 → ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ↔ ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) ) |
70 |
67 69
|
mpbird |
⊢ ( 𝜑 → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ) |
71 |
48 70
|
eqsstrid |
⊢ ( 𝜑 → ran 𝑃 ⊆ ℝ ) |
72 |
71
|
ssdifd |
⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ⊆ ( ℝ ∖ { 0 } ) ) |
73 |
|
itg1val2 |
⊢ ( ( ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ∧ ( ( ran 𝑃 ∖ { 0 } ) ∈ Fin ∧ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ⊆ ( ran 𝑃 ∖ { 0 } ) ∧ ( ran 𝑃 ∖ { 0 } ) ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) ) |
74 |
5 36 61 72 73
|
syl13anc |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) ) |
75 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝐺 : ℝ ⟶ ℝ ) |
76 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ran 𝐺 ∈ Fin ) |
77 |
|
inss2 |
⊢ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) |
78 |
77
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) ) |
79 |
|
i1fima |
⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ) |
80 |
1 79
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ) |
81 |
|
i1fima |
⊢ ( 𝐺 ∈ dom ∫1 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
82 |
2 81
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
83 |
|
inmbl |
⊢ ( ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ∧ ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
84 |
80 82 83
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
85 |
84
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
86 |
34 71
|
sstrid |
⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ⊆ ℝ ) |
87 |
86
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ ℝ ) |
88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ∈ ℝ ) |
89 |
63
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
90 |
88 89
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑤 − 𝑧 ) ∈ ℝ ) |
91 |
88
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ∈ ℂ ) |
92 |
89
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℂ ) |
93 |
91 92
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 𝑤 ) |
94 |
|
eldifsni |
⊢ ( 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) → 𝑤 ≠ 0 ) |
95 |
94
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ≠ 0 ) |
96 |
93 95
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) ≠ 0 ) |
97 |
|
oveq12 |
⊢ ( ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = ( 0 + 0 ) ) |
98 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
99 |
97 98
|
eqtrdi |
⊢ ( ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 0 ) |
100 |
99
|
necon3ai |
⊢ ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) ≠ 0 → ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) |
101 |
96 100
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) |
102 |
1 2 3
|
itg1addlem3 |
⊢ ( ( ( ( 𝑤 − 𝑧 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
103 |
90 89 101 102
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
104 |
1 2 3
|
itg1addlem2 |
⊢ ( 𝜑 → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
105 |
104
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
106 |
105 90 89
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℝ ) |
107 |
103 106
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
108 |
75 76 78 85 107
|
itg1addlem1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = Σ 𝑧 ∈ ran 𝐺 ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
109 |
87
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ ℂ ) |
110 |
1 2
|
i1faddlem |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
111 |
109 110
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
112 |
111
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) = ( vol ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
113 |
103
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = Σ 𝑧 ∈ ran 𝐺 ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
114 |
108 112 113
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) = Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) |
115 |
114
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = ( 𝑤 · Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
116 |
106
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℂ ) |
117 |
76 109 116
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
118 |
115 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
119 |
118
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
120 |
91 116
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
121 |
120
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
122 |
36 9 121
|
fsumcom |
⊢ ( 𝜑 → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
123 |
74 119 122
|
3eqtrd |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
124 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( 𝑦 + 𝑧 ) = ( ( 𝑤 − 𝑧 ) + 𝑧 ) ) |
125 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( 𝑦 𝐼 𝑧 ) = ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) |
126 |
124 125
|
oveq12d |
⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
127 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝑃 ∈ Fin ) |
128 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝑃 ⊆ ℝ ) |
129 |
128
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑣 ∈ ℝ ) |
130 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑧 ∈ ℝ ) |
131 |
129 130
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → ( 𝑣 − 𝑧 ) ∈ ℝ ) |
132 |
131
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 → ( 𝑣 − 𝑧 ) ∈ ℝ ) ) |
133 |
129
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑣 ∈ ℂ ) |
134 |
133
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑣 ∈ ℂ ) |
135 |
71
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) → 𝑦 ∈ ℝ ) |
136 |
135
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑦 ∈ ℝ ) |
137 |
136
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑦 ∈ ℂ ) |
138 |
63
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℂ ) |
139 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑧 ∈ ℂ ) |
140 |
134 137 139
|
subcan2ad |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → ( ( 𝑣 − 𝑧 ) = ( 𝑦 − 𝑧 ) ↔ 𝑣 = 𝑦 ) ) |
141 |
140
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) → ( ( 𝑣 − 𝑧 ) = ( 𝑦 − 𝑧 ) ↔ 𝑣 = 𝑦 ) ) ) |
142 |
132 141
|
dom2lem |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ ) |
143 |
|
f1f1orn |
⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
144 |
142 143
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
145 |
|
oveq1 |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 − 𝑧 ) = ( 𝑤 − 𝑧 ) ) |
146 |
|
eqid |
⊢ ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) = ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) |
147 |
|
ovex |
⊢ ( 𝑤 − 𝑧 ) ∈ V |
148 |
145 146 147
|
fvmpt |
⊢ ( 𝑤 ∈ ran 𝑃 → ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ‘ 𝑤 ) = ( 𝑤 − 𝑧 ) ) |
149 |
148
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ‘ 𝑤 ) = ( 𝑤 − 𝑧 ) ) |
150 |
|
f1f |
⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 ⟶ ℝ ) |
151 |
|
frn |
⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 ⟶ ℝ → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ⊆ ℝ ) |
152 |
142 150 151
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ⊆ ℝ ) |
153 |
152
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝑦 ∈ ℝ ) |
154 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝑧 ∈ ℝ ) |
155 |
153 154
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
156 |
104
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
157 |
156 153 154
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
158 |
155 157
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℝ ) |
159 |
158
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
160 |
126 127 144 149 159
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
161 |
128
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑤 ∈ ℝ ) |
162 |
161
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑤 ∈ ℂ ) |
163 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑧 ∈ ℂ ) |
164 |
162 163
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 𝑤 ) |
165 |
164
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
166 |
165
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑤 ∈ ran 𝑃 ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
167 |
160 166
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
168 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) |
169 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ran 𝐹 ) |
170 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ran 𝐺 ) |
171 |
169 170
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) ) |
172 |
|
funfvima2 |
⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
173 |
38 172
|
mpan |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ⊆ dom + → ( 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
174 |
168 171 173
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) |
175 |
|
df-ov |
⊢ ( 𝑦 + 𝑧 ) = ( + ‘ 〈 𝑦 , 𝑧 〉 ) |
176 |
174 175 48
|
3eltr4g |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 + 𝑧 ) ∈ ran 𝑃 ) |
177 |
62
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
178 |
177
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℂ ) |
179 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℂ ) |
180 |
178 179
|
pncand |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) − 𝑧 ) = 𝑦 ) |
181 |
180
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) |
182 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑦 + 𝑧 ) → ( 𝑣 − 𝑧 ) = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) |
183 |
182
|
rspceeqv |
⊢ ( ( ( 𝑦 + 𝑧 ) ∈ ran 𝑃 ∧ 𝑦 = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) → ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
184 |
176 181 183
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
185 |
184
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ∀ 𝑦 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
186 |
|
ssabral |
⊢ ( ran 𝐹 ⊆ { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } ↔ ∀ 𝑦 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
187 |
185 186
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝐹 ⊆ { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } ) |
188 |
146
|
rnmpt |
⊢ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) = { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } |
189 |
187 188
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝐹 ⊆ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
190 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℝ ) |
191 |
177 190
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
192 |
104
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
193 |
192 177 190
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
194 |
191 193
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℝ ) |
195 |
194
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
196 |
152
|
ssdifd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ⊆ ( ℝ ∖ ran 𝐹 ) ) |
197 |
196
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ) → 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) |
198 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
199 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → 𝑦 ∈ ℝ ) |
200 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → 𝑧 ∈ ℝ ) |
201 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) |
202 |
1 2 3
|
itg1addlem3 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
203 |
199 200 201 202
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
204 |
|
inss1 |
⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) |
205 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) → ¬ 𝑦 ∈ ran 𝐹 ) |
206 |
205
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ 𝑦 ∈ ran 𝐹 ) |
207 |
|
vex |
⊢ 𝑣 ∈ V |
208 |
207
|
eliniseg |
⊢ ( 𝑦 ∈ V → ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ 𝑣 𝐹 𝑦 ) ) |
209 |
208
|
elv |
⊢ ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ 𝑣 𝐹 𝑦 ) |
210 |
|
vex |
⊢ 𝑦 ∈ V |
211 |
207 210
|
brelrn |
⊢ ( 𝑣 𝐹 𝑦 → 𝑦 ∈ ran 𝐹 ) |
212 |
209 211
|
sylbi |
⊢ ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) → 𝑦 ∈ ran 𝐹 ) |
213 |
206 212
|
nsyl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) |
214 |
213
|
pm2.21d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) → 𝑣 ∈ ∅ ) ) |
215 |
214
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ∅ ) |
216 |
204 215
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ∅ ) |
217 |
|
ss0 |
⊢ ( ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ∅ → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ∅ ) |
218 |
216 217
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ∅ ) |
219 |
218
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = ( vol ‘ ∅ ) ) |
220 |
|
0mbl |
⊢ ∅ ∈ dom vol |
221 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
222 |
220 221
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
223 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
224 |
222 223
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
225 |
219 224
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = 0 ) |
226 |
203 225
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 𝐼 𝑧 ) = 0 ) |
227 |
226
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( ( 𝑦 + 𝑧 ) · 0 ) ) |
228 |
199 200
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
229 |
228
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℂ ) |
230 |
229
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · 0 ) = 0 ) |
231 |
227 230
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
232 |
231
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) → ( ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) ) |
233 |
|
oveq12 |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 + 𝑧 ) = ( 0 + 0 ) ) |
234 |
233 98
|
eqtrdi |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 + 𝑧 ) = 0 ) |
235 |
|
oveq12 |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 𝐼 𝑧 ) = ( 0 𝐼 0 ) ) |
236 |
|
0re |
⊢ 0 ∈ ℝ |
237 |
|
iftrue |
⊢ ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) = 0 ) |
238 |
|
c0ex |
⊢ 0 ∈ V |
239 |
237 3 238
|
ovmpoa |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 0 𝐼 0 ) = 0 ) |
240 |
236 236 239
|
mp2an |
⊢ ( 0 𝐼 0 ) = 0 |
241 |
235 240
|
eqtrdi |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 𝐼 𝑧 ) = 0 ) |
242 |
234 241
|
oveq12d |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( 0 · 0 ) ) |
243 |
|
0cn |
⊢ 0 ∈ ℂ |
244 |
243
|
mul01i |
⊢ ( 0 · 0 ) = 0 |
245 |
242 244
|
eqtrdi |
⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
246 |
232 245
|
pm2.61d2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
247 |
197 246
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
248 |
|
f1ofo |
⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
249 |
144 248
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
250 |
|
fofi |
⊢ ( ( ran 𝑃 ∈ Fin ∧ ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∈ Fin ) |
251 |
127 249 250
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∈ Fin ) |
252 |
189 195 247 251
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |
253 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 ) |
254 |
120
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
255 |
|
dfin4 |
⊢ ( ran 𝑃 ∩ { 0 } ) = ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) |
256 |
|
inss2 |
⊢ ( ran 𝑃 ∩ { 0 } ) ⊆ { 0 } |
257 |
255 256
|
eqsstrri |
⊢ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) ⊆ { 0 } |
258 |
257
|
sseli |
⊢ ( 𝑤 ∈ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ { 0 } ) |
259 |
|
elsni |
⊢ ( 𝑤 ∈ { 0 } → 𝑤 = 0 ) |
260 |
259
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑤 = 0 ) |
261 |
260
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = ( 0 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
262 |
104
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
263 |
260 236
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑤 ∈ ℝ ) |
264 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑧 ∈ ℝ ) |
265 |
263 264
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 − 𝑧 ) ∈ ℝ ) |
266 |
262 265 264
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℝ ) |
267 |
266
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℂ ) |
268 |
267
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 0 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
269 |
261 268
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
270 |
258 269
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
271 |
253 254 270 127
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
272 |
167 252 271
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
273 |
272
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑧 ∈ ran 𝐺 Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
274 |
195
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
275 |
9 7 274
|
fsumcom |
⊢ ( 𝜑 → Σ 𝑧 ∈ ran 𝐺 Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |
276 |
123 273 275
|
3eqtr2d |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |