Step |
Hyp |
Ref |
Expression |
1 |
|
itg1val |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
2 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
3 |
|
difss |
⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 |
4 |
|
ssfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝐹 ∈ dom ∫1 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
6 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
7 |
6
|
frnd |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ ) |
8 |
7
|
ssdifssd |
⊢ ( 𝐹 ∈ dom ∫1 → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
9 |
8
|
sselda |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ ℝ ) |
10 |
|
i1fima2sn |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
11 |
9 10
|
remulcld |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ ) |
12 |
5 11
|
fsumrecl |
⊢ ( 𝐹 ∈ dom ∫1 → Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ ) |
13 |
1 12
|
eqeltrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) |