| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg1climres.1 | ⊢ ( 𝜑  →  𝐴 : ℕ ⟶ dom  vol ) | 
						
							| 2 |  | itg1climres.2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ⊆  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 3 |  | itg1climres.3 | ⊢ ( 𝜑  →  ∪  ran  𝐴  =  ℝ ) | 
						
							| 4 |  | itg1climres.4 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 5 |  | itg1climres.5 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 6 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 7 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 8 |  | i1frn | ⊢ ( 𝐹  ∈  dom  ∫1  →  ran  𝐹  ∈  Fin ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  ran  𝐹  ∈  Fin ) | 
						
							| 10 |  | difss | ⊢ ( ran  𝐹  ∖  { 0 } )  ⊆  ran  𝐹 | 
						
							| 11 |  | ssfi | ⊢ ( ( ran  𝐹  ∈  Fin  ∧  ( ran  𝐹  ∖  { 0 } )  ⊆  ran  𝐹 )  →  ( ran  𝐹  ∖  { 0 } )  ∈  Fin ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( 𝜑  →  ( ran  𝐹  ∖  { 0 } )  ∈  Fin ) | 
						
							| 13 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  1  ∈  ℤ ) | 
						
							| 14 |  | i1fima | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ◡ 𝐹  “  { 𝑘 } )  ∈  dom  vol ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  { 𝑘 } )  ∈  dom  vol ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( ◡ 𝐹  “  { 𝑘 } )  ∈  dom  vol ) | 
						
							| 17 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 18 | 17 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 19 |  | inmbl | ⊢ ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∈  dom  vol  ∧  ( 𝐴 ‘ 𝑛 )  ∈  dom  vol )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ∈  dom  vol ) | 
						
							| 20 | 16 18 19 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ∈  dom  vol ) | 
						
							| 21 |  | mblvol | ⊢ ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ∈  dom  vol  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  =  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  =  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 23 |  | inss1 | ⊢ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ◡ 𝐹  “  { 𝑘 } ) | 
						
							| 24 | 23 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ◡ 𝐹  “  { 𝑘 } ) ) | 
						
							| 25 |  | mblss | ⊢ ( ( ◡ 𝐹  “  { 𝑘 } )  ∈  dom  vol  →  ( ◡ 𝐹  “  { 𝑘 } )  ⊆  ℝ ) | 
						
							| 26 | 16 25 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( ◡ 𝐹  “  { 𝑘 } )  ⊆  ℝ ) | 
						
							| 27 |  | mblvol | ⊢ ( ( ◡ 𝐹  “  { 𝑘 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 28 | 16 27 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 29 |  | i1fima2sn | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ∈  ℝ ) | 
						
							| 30 | 4 29 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ∈  ℝ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ∈  ℝ ) | 
						
							| 32 | 28 31 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol* ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ∈  ℝ ) | 
						
							| 33 |  | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ◡ 𝐹  “  { 𝑘 } )  ∧  ( ◡ 𝐹  “  { 𝑘 } )  ⊆  ℝ  ∧  ( vol* ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ∈  ℝ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 34 | 24 26 32 33 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 35 | 22 34 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 36 | 35 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 37 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ⊆  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 38 |  | sslin | ⊢ ( ( 𝐴 ‘ 𝑛 )  ⊆  ( 𝐴 ‘ ( 𝑛  +  1 ) )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 40 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  𝐴 : ℕ ⟶ dom  vol ) | 
						
							| 41 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 42 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ ⟶ dom  vol  ∧  ( 𝑛  +  1 )  ∈  ℕ )  →  ( 𝐴 ‘ ( 𝑛  +  1 ) )  ∈  dom  vol ) | 
						
							| 43 | 40 41 42 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ ( 𝑛  +  1 ) )  ∈  dom  vol ) | 
						
							| 44 |  | inmbl | ⊢ ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∈  dom  vol  ∧  ( 𝐴 ‘ ( 𝑛  +  1 ) )  ∈  dom  vol )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ∈  dom  vol ) | 
						
							| 45 | 16 43 44 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ∈  dom  vol ) | 
						
							| 46 |  | mblss | ⊢ ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ∈  dom  vol  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 48 |  | ovolss | ⊢ ( ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ∧  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ⊆  ℝ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 49 | 39 47 48 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 50 |  | mblvol | ⊢ ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ∈  dom  vol  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) )  =  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 51 | 45 50 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) )  =  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 52 | 49 22 51 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 53 | 52 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 54 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 55 | 54 | ineq2d | ⊢ ( 𝑛  =  𝑗  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( 𝑛  =  𝑗  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 57 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 58 |  | fvex | ⊢ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ∈  V | 
						
							| 59 | 56 57 58 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 60 |  | peano2nn | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 61 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 62 | 61 | ineq2d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 63 | 62 | fveq2d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 64 |  | fvex | ⊢ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) )  ∈  V | 
						
							| 65 | 63 57 64 | fvmpt | ⊢ ( ( 𝑗  +  1 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 66 | 60 65 | syl | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 67 | 59 66 | breq12d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗  +  1 ) )  ↔  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 68 | 67 | ralbiia | ⊢ ( ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗  +  1 ) )  ↔  ∀ 𝑗  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 69 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐴 ‘ ( 𝑛  +  1 ) )  =  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 70 | 69 | ineq2d | ⊢ ( 𝑛  =  𝑗  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( 𝑛  =  𝑗  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 72 | 56 71 | breq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) )  ↔  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 73 | 72 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) )  ↔  ∀ 𝑗  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 74 | 68 73 | bitr4i | ⊢ ( ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗  +  1 ) )  ↔  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 75 | 53 74 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 76 | 75 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 77 |  | ovolss | ⊢ ( ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ◡ 𝐹  “  { 𝑘 } )  ∧  ( ◡ 𝐹  “  { 𝑘 } )  ⊆  ℝ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol* ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 78 | 23 26 77 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol* ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 79 | 78 22 28 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 80 | 79 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 81 | 59 | breq1d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ↔  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) ) | 
						
							| 82 | 81 | ralbiia | ⊢ ( ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ↔  ∀ 𝑗  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 83 | 56 | breq1d | ⊢ ( 𝑛  =  𝑗  →  ( ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ↔  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) ) | 
						
							| 84 | 83 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ↔  ∀ 𝑗  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 85 | 82 84 | bitr4i | ⊢ ( ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ↔  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 86 | 80 85 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 87 |  | brralrspcev | ⊢ ( ( ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  ∈  ℝ  ∧  ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 88 | 30 86 87 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 89 | 6 13 36 76 88 | climsup | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ⇝  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 90 | 20 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) : ℕ ⟶ dom  vol ) | 
						
							| 91 | 39 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∀ 𝑛  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 92 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 93 |  | fvex | ⊢ ( 𝐴 ‘ 𝑗 )  ∈  V | 
						
							| 94 | 93 | inex2 | ⊢ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) )  ∈  V | 
						
							| 95 | 55 92 94 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 96 |  | fvex | ⊢ ( 𝐴 ‘ ( 𝑗  +  1 ) )  ∈  V | 
						
							| 97 | 96 | inex2 | ⊢ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) )  ∈  V | 
						
							| 98 | 62 92 97 | fvmpt | ⊢ ( ( 𝑗  +  1 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 99 | 60 98 | syl | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 100 | 95 99 | sseq12d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗  +  1 ) )  ↔  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 101 | 100 | ralbiia | ⊢ ( ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗  +  1 ) )  ↔  ∀ 𝑗  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 102 | 55 70 | sseq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ↔  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 103 | 102 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ↔  ∀ 𝑗  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 104 | 101 103 | bitr4i | ⊢ ( ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗  +  1 ) )  ↔  ∀ 𝑛  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ⊆  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 105 | 91 104 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 106 |  | volsup | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) : ℕ ⟶ dom  vol  ∧  ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗  +  1 ) ) )  →  ( vol ‘ ∪  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  sup ( ( vol  “  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 107 | 90 105 106 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol ‘ ∪  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  sup ( ( vol  “  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 108 | 95 | iuneq2i | ⊢ ∪  𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ∪  𝑗  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 109 | 55 | cbviunv | ⊢ ∪  𝑛  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  =  ∪  𝑗  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 110 |  | iunin2 | ⊢ ∪  𝑛  ∈  ℕ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ∪  𝑛  ∈  ℕ ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 111 | 108 109 110 | 3eqtr2i | ⊢ ∪  𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ∪  𝑛  ∈  ℕ ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 112 |  | ffn | ⊢ ( 𝐴 : ℕ ⟶ dom  vol  →  𝐴  Fn  ℕ ) | 
						
							| 113 |  | fniunfv | ⊢ ( 𝐴  Fn  ℕ  →  ∪  𝑛  ∈  ℕ ( 𝐴 ‘ 𝑛 )  =  ∪  ran  𝐴 ) | 
						
							| 114 | 1 112 113 | 3syl | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ( 𝐴 ‘ 𝑛 )  =  ∪  ran  𝐴 ) | 
						
							| 115 | 114 3 | eqtrd | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ( 𝐴 ‘ 𝑛 )  =  ℝ ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∪  𝑛  ∈  ℕ ( 𝐴 ‘ 𝑛 )  =  ℝ ) | 
						
							| 117 | 116 | ineq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ∪  𝑛  ∈  ℕ ( 𝐴 ‘ 𝑛 ) )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ℝ ) ) | 
						
							| 118 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ◡ 𝐹  “  { 𝑘 } )  ∈  dom  vol ) | 
						
							| 119 | 118 25 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ◡ 𝐹  “  { 𝑘 } )  ⊆  ℝ ) | 
						
							| 120 |  | dfss2 | ⊢ ( ( ◡ 𝐹  “  { 𝑘 } )  ⊆  ℝ  ↔  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ℝ )  =  ( ◡ 𝐹  “  { 𝑘 } ) ) | 
						
							| 121 | 119 120 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ℝ )  =  ( ◡ 𝐹  “  { 𝑘 } ) ) | 
						
							| 122 | 117 121 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ∪  𝑛  ∈  ℕ ( 𝐴 ‘ 𝑛 ) )  =  ( ◡ 𝐹  “  { 𝑘 } ) ) | 
						
							| 123 | 111 122 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∪  𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ◡ 𝐹  “  { 𝑘 } ) ) | 
						
							| 124 |  | ffn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) : ℕ ⟶ dom  vol  →  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  Fn  ℕ ) | 
						
							| 125 |  | fniunfv | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) )  Fn  ℕ  →  ∪  𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ∪  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 126 | 90 124 125 | 3syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∪  𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ∪  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 127 | 123 126 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ◡ 𝐹  “  { 𝑘 } )  =  ∪  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 128 | 127 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  =  ( vol ‘ ∪  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 129 | 36 | frnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ⊆  ℝ ) | 
						
							| 130 | 36 | fdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  dom  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ℕ ) | 
						
							| 131 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 132 |  | ne0i | ⊢ ( 1  ∈  ℕ  →  ℕ  ≠  ∅ ) | 
						
							| 133 | 131 132 | mp1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ℕ  ≠  ∅ ) | 
						
							| 134 | 130 133 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  dom  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ≠  ∅ ) | 
						
							| 135 |  | dm0rn0 | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ∅ ) | 
						
							| 136 | 135 | necon3bii | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ≠  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ≠  ∅ ) | 
						
							| 137 | 134 136 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ≠  ∅ ) | 
						
							| 138 |  | ffn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) : ℕ ⟶ ℝ  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  Fn  ℕ ) | 
						
							| 139 |  | breq1 | ⊢ ( 𝑧  =  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  →  ( 𝑧  ≤  𝑥  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 140 | 139 | ralrn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧  ≤  𝑥  ↔  ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 141 | 36 138 140 | 3syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧  ≤  𝑥  ↔  ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 142 | 141 | rexbidv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 143 | 88 142 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧  ≤  𝑥 ) | 
						
							| 144 |  | supxrre | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧  ≤  𝑥 )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 145 | 129 137 143 144 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 146 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 147 | 146 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 148 | 147 20 | cofmpt | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol  ∘  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 149 | 148 | rneqd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ran  ( vol  ∘  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 150 |  | rnco2 | ⊢ ran  ( vol  ∘  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ( vol  “  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 151 | 149 150 | eqtr3di | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ( vol  “  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 152 | 151 | supeq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  )  =  sup ( ( vol  “  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 153 | 145 152 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ ,   <  )  =  sup ( ( vol  “  ran  ( 𝑛  ∈  ℕ  ↦  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 154 | 107 128 153 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 155 | 89 154 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ⇝  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) | 
						
							| 156 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 157 |  | frn | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 158 | 4 156 157 | 3syl | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 159 | 158 | ssdifssd | ⊢ ( 𝜑  →  ( ran  𝐹  ∖  { 0 } )  ⊆  ℝ ) | 
						
							| 160 | 159 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  𝑘  ∈  ℝ ) | 
						
							| 161 | 160 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  𝑘  ∈  ℂ ) | 
						
							| 162 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 163 | 162 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) )  ∈  V | 
						
							| 164 | 163 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) )  ∈  V ) | 
						
							| 165 | 36 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 166 | 165 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 167 | 56 | oveq2d | ⊢ ( 𝑛  =  𝑗  →  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) ) ) | 
						
							| 168 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 169 |  | ovex | ⊢ ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) )  ∈  V | 
						
							| 170 | 167 168 169 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  =  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) ) ) | 
						
							| 171 | 59 | oveq2d | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑘  ·  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) )  =  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) ) ) | 
						
							| 172 | 170 171 | eqtr4d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  =  ( 𝑘  ·  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 173 | 172 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  =  ( 𝑘  ·  ( ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 174 | 6 13 155 161 164 166 173 | climmulc2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) )  ⇝  ( 𝑘  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) ) | 
						
							| 175 | 162 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ 𝐺 ) )  ∈  V | 
						
							| 176 | 175 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ 𝐺 ) )  ∈  V ) | 
						
							| 177 | 160 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  𝑘  ∈  ℝ ) | 
						
							| 178 | 177 35 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 179 | 178 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 180 | 179 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 181 | 180 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 182 | 181 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ran  𝐹  ∖  { 0 } )  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 183 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 184 | 5 | i1fres | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ( 𝐴 ‘ 𝑛 )  ∈  dom  vol )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 185 | 183 17 184 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 186 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ran  𝐹  ∖  { 0 } )  ∈  Fin ) | 
						
							| 187 |  | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  𝐹  Fn  ℝ ) | 
						
							| 188 | 4 156 187 | 3syl | ⊢ ( 𝜑  →  𝐹  Fn  ℝ ) | 
						
							| 189 | 188 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐹  Fn  ℝ ) | 
						
							| 190 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) | 
						
							| 191 | 189 190 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) | 
						
							| 192 |  | i1f0rn | ⊢ ( 𝐹  ∈  dom  ∫1  →  0  ∈  ran  𝐹 ) | 
						
							| 193 | 4 192 | syl | ⊢ ( 𝜑  →  0  ∈  ran  𝐹 ) | 
						
							| 194 | 193 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  0  ∈  ran  𝐹 ) | 
						
							| 195 | 191 194 | ifcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  ran  𝐹 ) | 
						
							| 196 | 195 5 | fmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐺 : ℝ ⟶ ran  𝐹 ) | 
						
							| 197 |  | frn | ⊢ ( 𝐺 : ℝ ⟶ ran  𝐹  →  ran  𝐺  ⊆  ran  𝐹 ) | 
						
							| 198 |  | ssdif | ⊢ ( ran  𝐺  ⊆  ran  𝐹  →  ( ran  𝐺  ∖  { 0 } )  ⊆  ( ran  𝐹  ∖  { 0 } ) ) | 
						
							| 199 | 196 197 198 | 3syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ran  𝐺  ∖  { 0 } )  ⊆  ( ran  𝐹  ∖  { 0 } ) ) | 
						
							| 200 | 158 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 201 | 200 | ssdifd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ran  𝐹  ∖  { 0 } )  ⊆  ( ℝ  ∖  { 0 } ) ) | 
						
							| 202 |  | itg1val2 | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  ( ( ran  𝐹  ∖  { 0 } )  ∈  Fin  ∧  ( ran  𝐺  ∖  { 0 } )  ⊆  ( ran  𝐹  ∖  { 0 } )  ∧  ( ran  𝐹  ∖  { 0 } )  ⊆  ( ℝ  ∖  { 0 } ) ) )  →  ( ∫1 ‘ 𝐺 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ◡ 𝐺  “  { 𝑘 } ) ) ) ) | 
						
							| 203 | 185 186 199 201 202 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫1 ‘ 𝐺 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ◡ 𝐺  “  { 𝑘 } ) ) ) ) | 
						
							| 204 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 205 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 206 | 204 205 | ifex | ⊢ if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 207 | 5 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V )  →  ( 𝐺 ‘ 𝑥 )  =  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 208 | 206 207 | mpan2 | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝐺 ‘ 𝑥 )  =  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 209 | 208 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  =  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 210 | 209 | eqeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝑥 )  =  𝑘  ↔  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘 ) ) | 
						
							| 211 |  | eldifsni | ⊢ ( 𝑘  ∈  ( ran  𝐹  ∖  { 0 } )  →  𝑘  ≠  0 ) | 
						
							| 212 | 211 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑥  ∈  ℝ )  →  𝑘  ≠  0 ) | 
						
							| 213 |  | neeq1 | ⊢ ( if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘  →  ( if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≠  0  ↔  𝑘  ≠  0 ) ) | 
						
							| 214 | 212 213 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑥  ∈  ℝ )  →  ( if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≠  0 ) ) | 
						
							| 215 |  | iffalse | ⊢ ( ¬  𝑥  ∈  ( 𝐴 ‘ 𝑛 )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  0 ) | 
						
							| 216 | 215 | necon1ai | ⊢ ( if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≠  0  →  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 217 | 214 216 | syl6 | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑥  ∈  ℝ )  →  ( if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘  →  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 218 | 217 | pm4.71rd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑥  ∈  ℝ )  →  ( if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘  ↔  ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 )  ∧  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘 ) ) ) | 
						
							| 219 | 210 218 | bitrd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝑥 )  =  𝑘  ↔  ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 )  ∧  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘 ) ) ) | 
						
							| 220 |  | iftrue | ⊢ ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 221 | 220 | eqeq1d | ⊢ ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 )  →  ( if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘  ↔  ( 𝐹 ‘ 𝑥 )  =  𝑘 ) ) | 
						
							| 222 | 221 | pm5.32i | ⊢ ( ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 )  ∧  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘 )  ↔  ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑘 ) ) | 
						
							| 223 | 222 | biancomi | ⊢ ( ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 )  ∧  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  𝑘 )  ↔  ( ( 𝐹 ‘ 𝑥 )  =  𝑘  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 224 | 219 223 | bitrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝑥 )  =  𝑘  ↔  ( ( 𝐹 ‘ 𝑥 )  =  𝑘  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 225 | 224 | pm5.32da | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ( 𝑥  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑥 )  =  𝑘 )  ↔  ( 𝑥  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑘  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 226 |  | anass | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑘 )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑘  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 227 | 225 226 | bitr4di | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ( 𝑥  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑥 )  =  𝑘 )  ↔  ( ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑘 )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 228 |  | i1ff | ⊢ ( 𝐺  ∈  dom  ∫1  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 229 |  | ffn | ⊢ ( 𝐺 : ℝ ⟶ ℝ  →  𝐺  Fn  ℝ ) | 
						
							| 230 | 185 228 229 | 3syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐺  Fn  ℝ ) | 
						
							| 231 | 230 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  𝐺  Fn  ℝ ) | 
						
							| 232 |  | fniniseg | ⊢ ( 𝐺  Fn  ℝ  →  ( 𝑥  ∈  ( ◡ 𝐺  “  { 𝑘 } )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑥 )  =  𝑘 ) ) ) | 
						
							| 233 | 231 232 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  { 𝑘 } )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑥 )  =  𝑘 ) ) ) | 
						
							| 234 |  | elin | ⊢ ( 𝑥  ∈  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ↔  ( 𝑥  ∈  ( ◡ 𝐹  “  { 𝑘 } )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 235 | 189 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  𝐹  Fn  ℝ ) | 
						
							| 236 |  | fniniseg | ⊢ ( 𝐹  Fn  ℝ  →  ( 𝑥  ∈  ( ◡ 𝐹  “  { 𝑘 } )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑘 ) ) ) | 
						
							| 237 | 235 236 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  { 𝑘 } )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑘 ) ) ) | 
						
							| 238 | 237 | anbi1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ( 𝑥  ∈  ( ◡ 𝐹  “  { 𝑘 } )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) )  ↔  ( ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑘 )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 239 | 234 238 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑥  ∈  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ↔  ( ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑘 )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 240 | 227 233 239 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  { 𝑘 } )  ↔  𝑥  ∈  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 241 | 240 | alrimiv | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ∀ 𝑥 ( 𝑥  ∈  ( ◡ 𝐺  “  { 𝑘 } )  ↔  𝑥  ∈  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 242 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑛 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 243 | 5 242 | nfcxfr | ⊢ Ⅎ 𝑥 𝐺 | 
						
							| 244 | 243 | nfcnv | ⊢ Ⅎ 𝑥 ◡ 𝐺 | 
						
							| 245 |  | nfcv | ⊢ Ⅎ 𝑥 { 𝑘 } | 
						
							| 246 | 244 245 | nfima | ⊢ Ⅎ 𝑥 ( ◡ 𝐺  “  { 𝑘 } ) | 
						
							| 247 |  | nfcv | ⊢ Ⅎ 𝑥 ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 248 | 246 247 | cleqf | ⊢ ( ( ◡ 𝐺  “  { 𝑘 } )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  ( ◡ 𝐺  “  { 𝑘 } )  ↔  𝑥  ∈  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 249 | 241 248 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ◡ 𝐺  “  { 𝑘 } )  =  ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 250 | 249 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑘 } ) )  =  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 251 | 250 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑘  ·  ( vol ‘ ( ◡ 𝐺  “  { 𝑘 } ) ) )  =  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 252 | 251 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ◡ 𝐺  “  { 𝑘 } ) ) )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 253 | 203 252 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫1 ‘ 𝐺 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 254 | 253 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ 𝐺 ) )  =  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 255 | 254 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ 𝐺 ) ) ‘ 𝑗 )  =  ( ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 256 | 167 | sumeq2sdv | ⊢ ( 𝑛  =  𝑗  →  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) ) ) | 
						
							| 257 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) | 
						
							| 258 |  | sumex | ⊢ Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) )  ∈  V | 
						
							| 259 | 256 257 258 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) ) ) | 
						
							| 260 | 170 | sumeq2sdv | ⊢ ( 𝑗  ∈  ℕ  →  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑗 ) ) ) ) ) | 
						
							| 261 | 259 260 | eqtr4d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 262 | 255 261 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ 𝐺 ) ) ‘ 𝑗 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ·  ( vol ‘ ( ( ◡ 𝐹  “  { 𝑘 } )  ∩  ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 263 | 6 7 12 174 176 182 262 | climfsum | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ 𝐺 ) )  ⇝  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) ) | 
						
							| 264 |  | itg1val | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ∫1 ‘ 𝐹 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) ) | 
						
							| 265 | 4 264 | syl | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝐹 )  =  Σ 𝑘  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑘  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑘 } ) ) ) ) | 
						
							| 266 | 263 265 | breqtrrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ 𝐺 ) )  ⇝  ( ∫1 ‘ 𝐹 ) ) |