Step |
Hyp |
Ref |
Expression |
1 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
2 |
|
difss |
⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 |
3 |
|
ssfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
4 |
1 2 3
|
sylancl |
⊢ ( 𝐹 ∈ dom ∫1 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
6 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ℝ ) |
8 |
7
|
frnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ran 𝐹 ⊆ ℝ ) |
9 |
8
|
ssdifssd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
10 |
9
|
sselda |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ ℝ ) |
11 |
|
i1fima2sn |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
13 |
10 12
|
remulcld |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ ) |
14 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑥 ∈ ran 𝐹 ) |
15 |
|
0cn |
⊢ 0 ∈ ℂ |
16 |
|
fnconstg |
⊢ ( 0 ∈ ℂ → ( ℂ × { 0 } ) Fn ℂ ) |
17 |
15 16
|
ax-mp |
⊢ ( ℂ × { 0 } ) Fn ℂ |
18 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
19 |
18
|
fneq1i |
⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
20 |
17 19
|
mpbir |
⊢ 0𝑝 Fn ℂ |
21 |
20
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 Fn ℂ ) |
22 |
6
|
ffnd |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 Fn ℝ ) |
23 |
|
cnex |
⊢ ℂ ∈ V |
24 |
23
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ℂ ∈ V ) |
25 |
|
reex |
⊢ ℝ ∈ V |
26 |
25
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
27 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
28 |
|
sseqin2 |
⊢ ( ℝ ⊆ ℂ ↔ ( ℂ ∩ ℝ ) = ℝ ) |
29 |
27 28
|
mpbi |
⊢ ( ℂ ∩ ℝ ) = ℝ |
30 |
|
0pval |
⊢ ( 𝑦 ∈ ℂ → ( 0𝑝 ‘ 𝑦 ) = 0 ) |
31 |
30
|
adantl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ℂ ) → ( 0𝑝 ‘ 𝑦 ) = 0 ) |
32 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
33 |
21 22 24 26 29 31 32
|
ofrfval |
⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
34 |
33
|
biimpa |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
35 |
22
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 Fn ℝ ) |
36 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
37 |
36
|
ralrn |
⊢ ( 𝐹 Fn ℝ → ( ∀ 𝑥 ∈ ran 𝐹 0 ≤ 𝑥 ↔ ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
38 |
35 37
|
syl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∀ 𝑥 ∈ ran 𝐹 0 ≤ 𝑥 ↔ ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
39 |
34 38
|
mpbird |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ ran 𝐹 0 ≤ 𝑥 ) |
40 |
39
|
r19.21bi |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ran 𝐹 ) → 0 ≤ 𝑥 ) |
41 |
14 40
|
sylan2 |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ 𝑥 ) |
42 |
|
i1fima |
⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
44 |
|
mblss |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ) |
45 |
|
ovolge0 |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
46 |
44 45
|
syl |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → 0 ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
47 |
|
mblvol |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
48 |
46 47
|
breqtrrd |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → 0 ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
49 |
43 48
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
50 |
10 12 41 49
|
mulge0d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
51 |
5 13 50
|
fsumge0 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 0 ≤ Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
52 |
|
itg1val |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
54 |
51 53
|
breqtrrd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 0 ≤ ( ∫1 ‘ 𝐹 ) ) |