| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1frn | ⊢ ( 𝐹  ∈  dom  ∫1  →  ran  𝐹  ∈  Fin ) | 
						
							| 2 |  | difss | ⊢ ( ran  𝐹  ∖  { 0 } )  ⊆  ran  𝐹 | 
						
							| 3 |  | ssfi | ⊢ ( ( ran  𝐹  ∈  Fin  ∧  ( ran  𝐹  ∖  { 0 } )  ⊆  ran  𝐹 )  →  ( ran  𝐹  ∖  { 0 } )  ∈  Fin ) | 
						
							| 4 | 1 2 3 | sylancl | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ran  𝐹  ∖  { 0 } )  ∈  Fin ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ran  𝐹  ∖  { 0 } )  ∈  Fin ) | 
						
							| 6 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 8 | 7 | frnd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 9 | 8 | ssdifssd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ran  𝐹  ∖  { 0 } )  ⊆  ℝ ) | 
						
							| 10 | 9 | sselda | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  ∧  𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  𝑥  ∈  ℝ ) | 
						
							| 11 |  | i1fima2sn | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ℝ ) | 
						
							| 12 | 11 | adantlr | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  ∧  𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ℝ ) | 
						
							| 13 | 10 12 | remulcld | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  ∧  𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( 𝑥  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ∈  ℝ ) | 
						
							| 14 |  | eldifi | ⊢ ( 𝑥  ∈  ( ran  𝐹  ∖  { 0 } )  →  𝑥  ∈  ran  𝐹 ) | 
						
							| 15 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 16 |  | fnconstg | ⊢ ( 0  ∈  ℂ  →  ( ℂ  ×  { 0 } )  Fn  ℂ ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( ℂ  ×  { 0 } )  Fn  ℂ | 
						
							| 18 |  | df-0p | ⊢ 0𝑝  =  ( ℂ  ×  { 0 } ) | 
						
							| 19 | 18 | fneq1i | ⊢ ( 0𝑝  Fn  ℂ  ↔  ( ℂ  ×  { 0 } )  Fn  ℂ ) | 
						
							| 20 | 17 19 | mpbir | ⊢ 0𝑝  Fn  ℂ | 
						
							| 21 | 20 | a1i | ⊢ ( 𝐹  ∈  dom  ∫1  →  0𝑝  Fn  ℂ ) | 
						
							| 22 | 6 | ffnd | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹  Fn  ℝ ) | 
						
							| 23 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐹  ∈  dom  ∫1  →  ℂ  ∈  V ) | 
						
							| 25 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( 𝐹  ∈  dom  ∫1  →  ℝ  ∈  V ) | 
						
							| 27 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 28 |  | sseqin2 | ⊢ ( ℝ  ⊆  ℂ  ↔  ( ℂ  ∩  ℝ )  =  ℝ ) | 
						
							| 29 | 27 28 | mpbi | ⊢ ( ℂ  ∩  ℝ )  =  ℝ | 
						
							| 30 |  | 0pval | ⊢ ( 𝑦  ∈  ℂ  →  ( 0𝑝 ‘ 𝑦 )  =  0 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑦  ∈  ℂ )  →  ( 0𝑝 ‘ 𝑦 )  =  0 ) | 
						
							| 32 |  | eqidd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 33 | 21 22 24 26 29 31 32 | ofrfval | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( 0𝑝  ∘r   ≤  𝐹  ↔  ∀ 𝑦  ∈  ℝ 0  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 34 | 33 | biimpa | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ∀ 𝑦  ∈  ℝ 0  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 35 | 22 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  𝐹  Fn  ℝ ) | 
						
							| 36 |  | breq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑦 )  →  ( 0  ≤  𝑥  ↔  0  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 37 | 36 | ralrn | ⊢ ( 𝐹  Fn  ℝ  →  ( ∀ 𝑥  ∈  ran  𝐹 0  ≤  𝑥  ↔  ∀ 𝑦  ∈  ℝ 0  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 38 | 35 37 | syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ∀ 𝑥  ∈  ran  𝐹 0  ≤  𝑥  ↔  ∀ 𝑦  ∈  ℝ 0  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 39 | 34 38 | mpbird | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ∀ 𝑥  ∈  ran  𝐹 0  ≤  𝑥 ) | 
						
							| 40 | 39 | r19.21bi | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  ∧  𝑥  ∈  ran  𝐹 )  →  0  ≤  𝑥 ) | 
						
							| 41 | 14 40 | sylan2 | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  ∧  𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  0  ≤  𝑥 ) | 
						
							| 42 |  | i1fima | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ◡ 𝐹  “  { 𝑥 } )  ∈  dom  vol ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  ∧  𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  ( ◡ 𝐹  “  { 𝑥 } )  ∈  dom  vol ) | 
						
							| 44 |  | mblss | ⊢ ( ( ◡ 𝐹  “  { 𝑥 } )  ∈  dom  vol  →  ( ◡ 𝐹  “  { 𝑥 } )  ⊆  ℝ ) | 
						
							| 45 |  | ovolge0 | ⊢ ( ( ◡ 𝐹  “  { 𝑥 } )  ⊆  ℝ  →  0  ≤  ( vol* ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( ◡ 𝐹  “  { 𝑥 } )  ∈  dom  vol  →  0  ≤  ( vol* ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 47 |  | mblvol | ⊢ ( ( ◡ 𝐹  “  { 𝑥 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 48 | 46 47 | breqtrrd | ⊢ ( ( ◡ 𝐹  “  { 𝑥 } )  ∈  dom  vol  →  0  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 49 | 43 48 | syl | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  ∧  𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  0  ≤  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 50 | 10 12 41 49 | mulge0d | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  ∧  𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) )  →  0  ≤  ( 𝑥  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) ) | 
						
							| 51 | 5 13 50 | fsumge0 | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  0  ≤  Σ 𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑥  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) ) | 
						
							| 52 |  | itg1val | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ∫1 ‘ 𝐹 )  =  Σ 𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑥  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐹 )  =  Σ 𝑥  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑥  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) ) | 
						
							| 54 | 51 53 | breqtrrd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  0  ≤  ( ∫1 ‘ 𝐹 ) ) |