| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg10a.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
| 2 |
|
itg10a.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 3 |
|
itg10a.3 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) |
| 4 |
|
itg1ge0a.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 5 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 7 |
|
difss |
⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 |
| 8 |
|
ssfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 9 |
6 7 8
|
sylancl |
⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 10 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 12 |
11
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 13 |
12
|
ssdifssd |
⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
| 14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℝ ) |
| 15 |
|
i1fima2sn |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 16 |
1 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 17 |
14 16
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ∈ ℝ ) |
| 18 |
|
0le0 |
⊢ 0 ≤ 0 |
| 19 |
|
i1fima |
⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 20 |
1 19
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 21 |
|
mblvol |
⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 24 |
11
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 25 |
|
fniniseg |
⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 28 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 𝑥 ∈ ℝ ) |
| 29 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
| 30 |
4
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑘 ) |
| 33 |
32
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 0 ≤ 𝑘 ) ) |
| 34 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 0 ∈ ℝ ) |
| 35 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 36 |
34 35
|
lenltd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 0 ≤ 𝑘 ↔ ¬ 𝑘 < 0 ) ) |
| 37 |
33 36
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ 𝑘 < 0 ) ) |
| 38 |
31 37
|
sylibd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑘 < 0 ) ) |
| 39 |
29 38
|
biimtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) → ¬ 𝑘 < 0 ) ) |
| 40 |
28 39
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑘 < 0 ) ) |
| 41 |
40
|
con4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝑘 < 0 → 𝑥 ∈ 𝐴 ) ) |
| 42 |
41
|
impancom |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) → 𝑥 ∈ 𝐴 ) ) |
| 43 |
27 42
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) → 𝑥 ∈ 𝐴 ) ) |
| 44 |
43
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ 𝐴 ) |
| 45 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 𝐴 ⊆ ℝ ) |
| 46 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol* ‘ 𝐴 ) = 0 ) |
| 47 |
|
ovolssnul |
⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) |
| 48 |
44 45 46 47
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) |
| 49 |
23 48
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) |
| 50 |
49
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = ( 𝑘 · 0 ) ) |
| 51 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℂ ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 𝑘 ∈ ℂ ) |
| 53 |
52
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · 0 ) = 0 ) |
| 54 |
50 53
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = 0 ) |
| 55 |
18 54
|
breqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 0 ≤ ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 56 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 𝑘 ∈ ℝ ) |
| 57 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ 𝑘 ) |
| 59 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 60 |
|
mblss |
⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) |
| 62 |
|
ovolge0 |
⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 63 |
61 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 64 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 65 |
63 64
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 66 |
56 57 58 65
|
mulge0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 67 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ∈ ℝ ) |
| 68 |
55 66 14 67
|
ltlecasei |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 69 |
9 17 68
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 70 |
|
itg1val |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 71 |
1 70
|
syl |
⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 72 |
69 71
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( ∫1 ‘ 𝐹 ) ) |