Metamath Proof Explorer


Theorem itg1ge0a

Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg10a.1 ( 𝜑𝐹 ∈ dom ∫1 )
itg10a.2 ( 𝜑𝐴 ⊆ ℝ )
itg10a.3 ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 )
itg1ge0a.4 ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → 0 ≤ ( 𝐹𝑥 ) )
Assertion itg1ge0a ( 𝜑 → 0 ≤ ( ∫1𝐹 ) )

Proof

Step Hyp Ref Expression
1 itg10a.1 ( 𝜑𝐹 ∈ dom ∫1 )
2 itg10a.2 ( 𝜑𝐴 ⊆ ℝ )
3 itg10a.3 ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 )
4 itg1ge0a.4 ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → 0 ≤ ( 𝐹𝑥 ) )
5 i1frn ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin )
6 1 5 syl ( 𝜑 → ran 𝐹 ∈ Fin )
7 difss ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹
8 ssfi ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin )
9 6 7 8 sylancl ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin )
10 i1ff ( 𝐹 ∈ dom ∫1𝐹 : ℝ ⟶ ℝ )
11 1 10 syl ( 𝜑𝐹 : ℝ ⟶ ℝ )
12 11 frnd ( 𝜑 → ran 𝐹 ⊆ ℝ )
13 12 ssdifssd ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ )
14 13 sselda ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℝ )
15 i1fima2sn ( ( 𝐹 ∈ dom ∫1𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ∈ ℝ )
16 1 15 sylan ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ∈ ℝ )
17 14 16 remulcld ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) ∈ ℝ )
18 0le0 0 ≤ 0
19 i1fima ( 𝐹 ∈ dom ∫1 → ( 𝐹 “ { 𝑘 } ) ∈ dom vol )
20 1 19 syl ( 𝜑 → ( 𝐹 “ { 𝑘 } ) ∈ dom vol )
21 mblvol ( ( 𝐹 “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( 𝐹 “ { 𝑘 } ) ) )
22 20 21 syl ( 𝜑 → ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( 𝐹 “ { 𝑘 } ) ) )
23 22 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( 𝐹 “ { 𝑘 } ) ) )
24 11 ffnd ( 𝜑𝐹 Fn ℝ )
25 fniniseg ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) )
26 24 25 syl ( 𝜑 → ( 𝑥 ∈ ( 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) )
27 26 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑥 ∈ ( 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) )
28 simprl ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → 𝑥 ∈ ℝ )
29 eldif ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴 ) )
30 4 ex ( 𝜑 → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 0 ≤ ( 𝐹𝑥 ) ) )
31 30 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 0 ≤ ( 𝐹𝑥 ) ) )
32 simprr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( 𝐹𝑥 ) = 𝑘 )
33 32 breq2d ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( 0 ≤ ( 𝐹𝑥 ) ↔ 0 ≤ 𝑘 ) )
34 0red ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → 0 ∈ ℝ )
35 14 adantr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → 𝑘 ∈ ℝ )
36 34 35 lenltd ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( 0 ≤ 𝑘 ↔ ¬ 𝑘 < 0 ) )
37 33 36 bitrd ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( 0 ≤ ( 𝐹𝑥 ) ↔ ¬ 𝑘 < 0 ) )
38 31 37 sylibd ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑘 < 0 ) )
39 29 38 syl5bir ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( ( 𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴 ) → ¬ 𝑘 < 0 ) )
40 28 39 mpand ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( ¬ 𝑥𝐴 → ¬ 𝑘 < 0 ) )
41 40 con4d ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) ) → ( 𝑘 < 0 → 𝑥𝐴 ) )
42 41 impancom ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) = 𝑘 ) → 𝑥𝐴 ) )
43 27 42 sylbid ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑥 ∈ ( 𝐹 “ { 𝑘 } ) → 𝑥𝐴 ) )
44 43 ssrdv ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝐹 “ { 𝑘 } ) ⊆ 𝐴 )
45 2 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 𝐴 ⊆ ℝ )
46 3 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol* ‘ 𝐴 ) = 0 )
47 ovolssnul ( ( ( 𝐹 “ { 𝑘 } ) ⊆ 𝐴𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( 𝐹 “ { 𝑘 } ) ) = 0 )
48 44 45 46 47 syl3anc ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol* ‘ ( 𝐹 “ { 𝑘 } ) ) = 0 )
49 23 48 eqtrd ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) = 0 )
50 49 oveq2d ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) = ( 𝑘 · 0 ) )
51 14 recnd ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℂ )
52 51 adantr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 𝑘 ∈ ℂ )
53 52 mul01d ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · 0 ) = 0 )
54 50 53 eqtrd ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) = 0 )
55 18 54 breqtrrid ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 0 ≤ ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) )
56 14 adantr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 𝑘 ∈ ℝ )
57 16 adantr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ∈ ℝ )
58 simpr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ 𝑘 )
59 20 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( 𝐹 “ { 𝑘 } ) ∈ dom vol )
60 mblss ( ( 𝐹 “ { 𝑘 } ) ∈ dom vol → ( 𝐹 “ { 𝑘 } ) ⊆ ℝ )
61 59 60 syl ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( 𝐹 “ { 𝑘 } ) ⊆ ℝ )
62 ovolge0 ( ( 𝐹 “ { 𝑘 } ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( 𝐹 “ { 𝑘 } ) ) )
63 61 62 syl ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( vol* ‘ ( 𝐹 “ { 𝑘 } ) ) )
64 22 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( 𝐹 “ { 𝑘 } ) ) )
65 63 64 breqtrrd ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) )
66 56 57 58 65 mulge0d ( ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) )
67 0red ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ∈ ℝ )
68 55 66 14 67 ltlecasei ( ( 𝜑𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) )
69 9 17 68 fsumge0 ( 𝜑 → 0 ≤ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) )
70 itg1val ( 𝐹 ∈ dom ∫1 → ( ∫1𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) )
71 1 70 syl ( 𝜑 → ( ∫1𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( 𝐹 “ { 𝑘 } ) ) ) )
72 69 71 breqtrrd ( 𝜑 → 0 ≤ ( ∫1𝐹 ) )