| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1  ∧  𝐹  ∘r   ≤  𝐺 )  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 2 |  | 0ss | ⊢ ∅  ⊆  ℝ | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1  ∧  𝐹  ∘r   ≤  𝐺 )  →  ∅  ⊆  ℝ ) | 
						
							| 4 |  | ovol0 | ⊢ ( vol* ‘ ∅ )  =  0 | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1  ∧  𝐹  ∘r   ≤  𝐺 )  →  ( vol* ‘ ∅ )  =  0 ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1  ∧  𝐹  ∘r   ≤  𝐺 )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 8 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 9 |  | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  𝐹  Fn  ℝ ) | 
						
							| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  →  𝐹  Fn  ℝ ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 12 |  | i1ff | ⊢ ( 𝐺  ∈  dom  ∫1  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 13 |  | ffn | ⊢ ( 𝐺 : ℝ ⟶ ℝ  →  𝐺  Fn  ℝ ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  →  𝐺  Fn  ℝ ) | 
						
							| 15 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  →  ℝ  ∈  V ) | 
						
							| 17 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 18 |  | eqidd | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 19 |  | eqidd | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 20 | 10 14 16 16 17 18 19 | ofrval | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  ∧  𝐹  ∘r   ≤  𝐺  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 21 | 20 | 3exp | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1 )  →  ( 𝐹  ∘r   ≤  𝐺  →  ( 𝑥  ∈  ℝ  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 22 | 21 | 3impia | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1  ∧  𝐹  ∘r   ≤  𝐺 )  →  ( 𝑥  ∈  ℝ  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 23 |  | eldifi | ⊢ ( 𝑥  ∈  ( ℝ  ∖  ∅ )  →  𝑥  ∈  ℝ ) | 
						
							| 24 | 22 23 | impel | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1  ∧  𝐹  ∘r   ≤  𝐺 )  ∧  𝑥  ∈  ( ℝ  ∖  ∅ ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 25 | 1 3 5 6 24 | itg1lea | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐺  ∈  dom  ∫1  ∧  𝐹  ∘r   ≤  𝐺 )  →  ( ∫1 ‘ 𝐹 )  ≤  ( ∫1 ‘ 𝐺 ) ) |