Metamath Proof Explorer


Theorem itg1le

Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion itg1le ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺 ) → ( ∫1𝐹 ) ≤ ( ∫1𝐺 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺 ) → 𝐹 ∈ dom ∫1 )
2 0ss ∅ ⊆ ℝ
3 2 a1i ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺 ) → ∅ ⊆ ℝ )
4 ovol0 ( vol* ‘ ∅ ) = 0
5 4 a1i ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺 ) → ( vol* ‘ ∅ ) = 0 )
6 simp2 ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺 ) → 𝐺 ∈ dom ∫1 )
7 simpl ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) → 𝐹 ∈ dom ∫1 )
8 i1ff ( 𝐹 ∈ dom ∫1𝐹 : ℝ ⟶ ℝ )
9 ffn ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ )
10 7 8 9 3syl ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) → 𝐹 Fn ℝ )
11 simpr ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) → 𝐺 ∈ dom ∫1 )
12 i1ff ( 𝐺 ∈ dom ∫1𝐺 : ℝ ⟶ ℝ )
13 ffn ( 𝐺 : ℝ ⟶ ℝ → 𝐺 Fn ℝ )
14 11 12 13 3syl ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) → 𝐺 Fn ℝ )
15 reex ℝ ∈ V
16 15 a1i ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) → ℝ ∈ V )
17 inidm ( ℝ ∩ ℝ ) = ℝ
18 eqidd ( ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
19 eqidd ( ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺𝑥 ) = ( 𝐺𝑥 ) )
20 10 14 16 16 17 18 19 ofrval ( ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) ∧ 𝐹r𝐺𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ≤ ( 𝐺𝑥 ) )
21 20 3exp ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1 ) → ( 𝐹r𝐺 → ( 𝑥 ∈ ℝ → ( 𝐹𝑥 ) ≤ ( 𝐺𝑥 ) ) ) )
22 21 3impia ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺 ) → ( 𝑥 ∈ ℝ → ( 𝐹𝑥 ) ≤ ( 𝐺𝑥 ) ) )
23 eldifi ( 𝑥 ∈ ( ℝ ∖ ∅ ) → 𝑥 ∈ ℝ )
24 22 23 impel ( ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺 ) ∧ 𝑥 ∈ ( ℝ ∖ ∅ ) ) → ( 𝐹𝑥 ) ≤ ( 𝐺𝑥 ) )
25 1 3 5 6 24 itg1lea ( ( 𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺 ) → ( ∫1𝐹 ) ≤ ( ∫1𝐺 ) )