| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg10a.1 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 2 |  | itg10a.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 3 |  | itg10a.3 | ⊢ ( 𝜑  →  ( vol* ‘ 𝐴 )  =  0 ) | 
						
							| 4 |  | itg1lea.4 | ⊢ ( 𝜑  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 5 |  | itg1lea.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 6 |  | i1fsub | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  𝐹  ∈  dom  ∫1 )  →  ( 𝐺  ∘f   −  𝐹 )  ∈  dom  ∫1 ) | 
						
							| 7 | 4 1 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘f   −  𝐹 )  ∈  dom  ∫1 ) | 
						
							| 8 |  | eldifi | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 9 |  | i1ff | ⊢ ( 𝐺  ∈  dom  ∫1  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 12 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 15 | 11 14 | subge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 0  ≤  ( ( 𝐺 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 16 | 8 15 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 0  ≤  ( ( 𝐺 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 17 | 5 16 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  0  ≤  ( ( 𝐺 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 18 | 10 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ℝ ) | 
						
							| 19 | 13 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℝ ) | 
						
							| 20 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 22 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 23 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 24 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 25 | 18 19 21 21 22 23 24 | ofval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐺  ∘f   −  𝐹 ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 26 | 8 25 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( ( 𝐺  ∘f   −  𝐹 ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 27 | 17 26 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  0  ≤  ( ( 𝐺  ∘f   −  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 28 | 7 2 3 27 | itg1ge0a | ⊢ ( 𝜑  →  0  ≤  ( ∫1 ‘ ( 𝐺  ∘f   −  𝐹 ) ) ) | 
						
							| 29 |  | itg1sub | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  𝐹  ∈  dom  ∫1 )  →  ( ∫1 ‘ ( 𝐺  ∘f   −  𝐹 ) )  =  ( ( ∫1 ‘ 𝐺 )  −  ( ∫1 ‘ 𝐹 ) ) ) | 
						
							| 30 | 4 1 29 | syl2anc | ⊢ ( 𝜑  →  ( ∫1 ‘ ( 𝐺  ∘f   −  𝐹 ) )  =  ( ( ∫1 ‘ 𝐺 )  −  ( ∫1 ‘ 𝐹 ) ) ) | 
						
							| 31 | 28 30 | breqtrd | ⊢ ( 𝜑  →  0  ≤  ( ( ∫1 ‘ 𝐺 )  −  ( ∫1 ‘ 𝐹 ) ) ) | 
						
							| 32 |  | itg1cl | ⊢ ( 𝐺  ∈  dom  ∫1  →  ( ∫1 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 33 | 4 32 | syl | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 34 |  | itg1cl | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ∫1 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 35 | 1 34 | syl | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 36 | 33 35 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ∫1 ‘ 𝐺 )  −  ( ∫1 ‘ 𝐹 ) )  ↔  ( ∫1 ‘ 𝐹 )  ≤  ( ∫1 ‘ 𝐺 ) ) ) | 
						
							| 37 | 31 36 | mpbid | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝐹 )  ≤  ( ∫1 ‘ 𝐺 ) ) |