| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg1val |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 3 |
|
simpr2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ) |
| 4 |
3
|
sselda |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ 𝐴 ) |
| 5 |
|
simpr3 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) |
| 6 |
5
|
sselda |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( ℝ ∖ { 0 } ) ) |
| 7 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℝ ∖ { 0 } ) → 𝑥 ∈ ℝ ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 9 |
|
i1fima2sn |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 10 |
9
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 11 |
6 10
|
syldan |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 12 |
8 11
|
remulcld |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℂ ) |
| 14 |
4 13
|
syldan |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℂ ) |
| 15 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 17 |
|
ffrn |
⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 19 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) → ¬ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
| 21 |
|
eldif |
⊢ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ { 0 } ) ) |
| 22 |
|
simplr3 |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) |
| 23 |
22
|
ssdifssd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ⊆ ( ℝ ∖ { 0 } ) ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 25 |
23 24
|
sseldd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ( ℝ ∖ { 0 } ) ) |
| 26 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ { 0 } ) → ¬ 𝑥 ∈ { 0 } ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ { 0 } ) |
| 28 |
27
|
biantrud |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 ∈ ran 𝐹 ↔ ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ { 0 } ) ) ) |
| 29 |
21 28
|
bitr4id |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ 𝑥 ∈ ran 𝐹 ) ) |
| 30 |
20 29
|
mtbid |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ ran 𝐹 ) |
| 31 |
|
disjsn |
⊢ ( ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹 ) |
| 32 |
30 31
|
sylibr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) |
| 33 |
|
fimacnvdisj |
⊢ ( ( 𝐹 : ℝ ⟶ ran 𝐹 ∧ ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) → ( ◡ 𝐹 “ { 𝑥 } ) = ∅ ) |
| 34 |
18 32 33
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( ◡ 𝐹 “ { 𝑥 } ) = ∅ ) |
| 35 |
34
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol ‘ ∅ ) ) |
| 36 |
|
0mbl |
⊢ ∅ ∈ dom vol |
| 37 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
| 38 |
36 37
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 39 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
| 40 |
38 39
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
| 41 |
35 40
|
eqtrdi |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = 0 ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) = ( 𝑥 · 0 ) ) |
| 43 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ 𝐴 ) |
| 44 |
43 8
|
sylan2 |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ℝ ) |
| 45 |
44
|
recnd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ℂ ) |
| 46 |
45
|
mul01d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · 0 ) = 0 ) |
| 47 |
42 46
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) = 0 ) |
| 48 |
|
simpr1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → 𝐴 ∈ Fin ) |
| 49 |
3 14 47 48
|
fsumss |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) = Σ 𝑥 ∈ 𝐴 ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 50 |
2 49
|
eqtrd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ 𝐴 ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |