Step |
Hyp |
Ref |
Expression |
1 |
|
i1f0 |
⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |
2 |
|
reex |
⊢ ℝ ∈ V |
3 |
2
|
a1i |
⊢ ( ⊤ → ℝ ∈ V ) |
4 |
|
i1ff |
⊢ ( ( ℝ × { 0 } ) ∈ dom ∫1 → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) |
5 |
1 4
|
mp1i |
⊢ ( ⊤ → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) |
6 |
|
leid |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ 𝑥 ) |
7 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ 𝑥 ) |
8 |
3 5 7
|
caofref |
⊢ ( ⊤ → ( ℝ × { 0 } ) ∘r ≤ ( ℝ × { 0 } ) ) |
9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
10 |
9
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ℂ ) |
11 |
5
|
ffnd |
⊢ ( ⊤ → ( ℝ × { 0 } ) Fn ℝ ) |
12 |
10 11
|
0pledm |
⊢ ( ⊤ → ( 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( ℝ × { 0 } ) ) ) |
13 |
8 12
|
mpbird |
⊢ ( ⊤ → 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ) |
14 |
13
|
mptru |
⊢ 0𝑝 ∘r ≤ ( ℝ × { 0 } ) |
15 |
|
itg2itg1 |
⊢ ( ( ( ℝ × { 0 } ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ) → ( ∫2 ‘ ( ℝ × { 0 } ) ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) ) |
16 |
1 14 15
|
mp2an |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) |
17 |
|
itg10 |
⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 |
18 |
16 17
|
eqtri |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |