Step |
Hyp |
Ref |
Expression |
1 |
|
itg2add.f1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
itg2add.f2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
itg2add.f3 |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
4 |
|
itg2add.g1 |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
5 |
|
itg2add.g2 |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) |
6 |
|
itg2add.g3 |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
7 |
1 2
|
mbfi1fseq |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
4 5
|
mbfi1fseq |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) |
9 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝐹 ∈ MblFn ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝐺 ∈ MblFn ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) |
15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
16 |
|
simprl1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝑓 : ℕ ⟶ dom ∫1 ) |
17 |
|
simprl2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ) |
18 |
|
simprl3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
19 |
|
simprr1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝑔 : ℕ ⟶ dom ∫1 ) |
20 |
|
simprr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ) |
21 |
|
simprr3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
22 |
10 11 12 13 14 15 16 17 18 19 20 21
|
itg2addlem |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
23 |
22
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
24 |
23
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
25 |
9 24
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
26 |
7 8 25
|
mp2and |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |