| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2add.f1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | itg2add.f2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 3 |  | itg2add.f3 | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 4 |  | itg2add.g1 | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) | 
						
							| 5 |  | itg2add.g2 | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 6 |  | itg2add.g3 | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 7 | 1 2 | mbfi1fseq | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 8 | 4 5 | mbfi1fseq | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 9 |  | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) )  ↔  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  𝐹  ∈  MblFn ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  𝐺  ∈  MblFn ) | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 15 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 16 |  | simprl1 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  𝑓 : ℕ ⟶ dom  ∫1 ) | 
						
							| 17 |  | simprl2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 18 |  | simprl3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 19 |  | simprr1 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  𝑔 : ℕ ⟶ dom  ∫1 ) | 
						
							| 20 |  | simprr2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 21 |  | simprr3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 22 | 10 11 12 13 14 15 16 17 18 19 20 21 | itg2addlem | ⊢ ( ( 𝜑  ∧  ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) ) )  →  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) )  =  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) )  =  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 24 | 23 | exlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) )  =  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 25 | 9 24 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑓 ‘ 𝑛 )  ∧  ( 𝑓 ‘ 𝑛 )  ∘r   ≤  ( 𝑓 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) )  ∧  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑔 ‘ 𝑛 )  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) )  =  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 26 | 7 8 25 | mp2and | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) )  =  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) |