| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2add.f1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | itg2add.f2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 3 |  | itg2add.f3 | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 4 |  | itg2add.g1 | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) | 
						
							| 5 |  | itg2add.g2 | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 6 |  | itg2add.g3 | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 7 |  | itg2add.p1 | ⊢ ( 𝜑  →  𝑃 : ℕ ⟶ dom  ∫1 ) | 
						
							| 8 |  | itg2add.p2 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 9 |  | itg2add.p3 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 10 |  | itg2add.q1 | ⊢ ( 𝜑  →  𝑄 : ℕ ⟶ dom  ∫1 ) | 
						
							| 11 |  | itg2add.q2 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑛 )  ∧  ( 𝑄 ‘ 𝑛 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 12 |  | itg2add.q3 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 13 | 1 4 | mbfadd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  ∈  MblFn ) | 
						
							| 14 |  | ge0addcl | ⊢ ( ( 𝑦  ∈  ( 0 [,) +∞ )  ∧  𝑧  ∈  ( 0 [,) +∞ ) )  →  ( 𝑦  +  𝑧 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 0 [,) +∞ )  ∧  𝑧  ∈  ( 0 [,) +∞ ) ) )  →  ( 𝑦  +  𝑧 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 16 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 18 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 19 | 15 2 5 17 17 18 | off | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝑔  ∈  dom  ∫1 )  →  𝑓  ∈  dom  ∫1 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝑔  ∈  dom  ∫1 )  →  𝑔  ∈  dom  ∫1 ) | 
						
							| 22 | 20 21 | i1fadd | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝑔  ∈  dom  ∫1 )  →  ( 𝑓  ∘f   +  𝑔 )  ∈  dom  ∫1 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑔  ∈  dom  ∫1 ) )  →  ( 𝑓  ∘f   +  𝑔 )  ∈  dom  ∫1 ) | 
						
							| 24 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 26 |  | inidm | ⊢ ( ℕ  ∩  ℕ )  =  ℕ | 
						
							| 27 | 23 7 10 25 25 26 | off | ⊢ ( 𝜑  →  ( 𝑃  ∘f   ∘f   +  𝑄 ) : ℕ ⟶ dom  ∫1 ) | 
						
							| 28 |  | ge0addcl | ⊢ ( ( 𝑓  ∈  ( 0 [,) +∞ )  ∧  𝑔  ∈  ( 0 [,) +∞ ) )  →  ( 𝑓  +  𝑔 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑓  ∈  ( 0 [,) +∞ )  ∧  𝑔  ∈  ( 0 [,) +∞ ) ) )  →  ( 𝑓  +  𝑔 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 30 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1 ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ 𝑚 ) ) | 
						
							| 32 | 31 | breq2d | ⊢ ( 𝑛  =  𝑚  →  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ↔  0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 33 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑃 ‘ ( 𝑛  +  1 ) )  =  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 34 | 31 33 | breq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 35 | 32 34 | anbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) )  ↔  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 )  ∧  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 36 | 35 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 )  ∧  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 37 | 8 36 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 )  ∧  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 38 | 37 | simpld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 ) ) | 
						
							| 39 |  | breq2 | ⊢ ( 𝑓  =  ( 𝑃 ‘ 𝑚 )  →  ( 0𝑝  ∘r   ≤  𝑓  ↔  0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 40 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑃 ‘ 𝑚 )  →  ( 𝑓 : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 41 | 39 40 | imbi12d | ⊢ ( 𝑓  =  ( 𝑃 ‘ 𝑚 )  →  ( ( 0𝑝  ∘r   ≤  𝑓  →  𝑓 : ℝ ⟶ ( 0 [,) +∞ ) )  ↔  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 )  →  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) ) | 
						
							| 42 |  | i1ff | ⊢ ( 𝑓  ∈  dom  ∫1  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 43 | 42 | ffnd | ⊢ ( 𝑓  ∈  dom  ∫1  →  𝑓  Fn  ℝ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝑓 )  →  𝑓  Fn  ℝ ) | 
						
							| 45 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 46 |  | fnconstg | ⊢ ( 0  ∈  ℂ  →  ( ℂ  ×  { 0 } )  Fn  ℂ ) | 
						
							| 47 | 45 46 | ax-mp | ⊢ ( ℂ  ×  { 0 } )  Fn  ℂ | 
						
							| 48 |  | df-0p | ⊢ 0𝑝  =  ( ℂ  ×  { 0 } ) | 
						
							| 49 | 48 | fneq1i | ⊢ ( 0𝑝  Fn  ℂ  ↔  ( ℂ  ×  { 0 } )  Fn  ℂ ) | 
						
							| 50 | 47 49 | mpbir | ⊢ 0𝑝  Fn  ℂ | 
						
							| 51 | 50 | a1i | ⊢ ( 𝑓  ∈  dom  ∫1  →  0𝑝  Fn  ℂ ) | 
						
							| 52 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 53 | 52 | a1i | ⊢ ( 𝑓  ∈  dom  ∫1  →  ℂ  ∈  V ) | 
						
							| 54 | 16 | a1i | ⊢ ( 𝑓  ∈  dom  ∫1  →  ℝ  ∈  V ) | 
						
							| 55 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 56 |  | sseqin2 | ⊢ ( ℝ  ⊆  ℂ  ↔  ( ℂ  ∩  ℝ )  =  ℝ ) | 
						
							| 57 | 55 56 | mpbi | ⊢ ( ℂ  ∩  ℝ )  =  ℝ | 
						
							| 58 |  | 0pval | ⊢ ( 𝑥  ∈  ℂ  →  ( 0𝑝 ‘ 𝑥 )  =  0 ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝑥  ∈  ℂ )  →  ( 0𝑝 ‘ 𝑥 )  =  0 ) | 
						
							| 60 |  | eqidd | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 61 | 51 43 53 54 57 59 60 | ofrfval | ⊢ ( 𝑓  ∈  dom  ∫1  →  ( 0𝑝  ∘r   ≤  𝑓  ↔  ∀ 𝑥  ∈  ℝ 0  ≤  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 62 | 61 | biimpa | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝑓 )  →  ∀ 𝑥  ∈  ℝ 0  ≤  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 63 | 42 | ffvelcdmda | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 64 |  | elrege0 | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑓 ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 65 | 64 | simplbi2 | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ℝ  →  ( 0  ≤  ( 𝑓 ‘ 𝑥 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 66 | 63 65 | syl | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( 0  ≤  ( 𝑓 ‘ 𝑥 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 67 | 66 | ralimdva | ⊢ ( 𝑓  ∈  dom  ∫1  →  ( ∀ 𝑥  ∈  ℝ 0  ≤  ( 𝑓 ‘ 𝑥 )  →  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 68 | 67 | imp | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  ∀ 𝑥  ∈  ℝ 0  ≤  ( 𝑓 ‘ 𝑥 ) )  →  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 69 | 62 68 | syldan | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝑓 )  →  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 70 |  | ffnfv | ⊢ ( 𝑓 : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( 𝑓  Fn  ℝ  ∧  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 71 | 44 69 70 | sylanbrc | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝑓 )  →  𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 72 | 71 | ex | ⊢ ( 𝑓  ∈  dom  ∫1  →  ( 0𝑝  ∘r   ≤  𝑓  →  𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 73 | 41 72 | vtoclga | ⊢ ( ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1  →  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 )  →  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 74 | 30 38 73 | sylc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 75 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ 𝑚 )  ∈  dom  ∫1 ) | 
						
							| 76 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑄 ‘ 𝑛 )  =  ( 𝑄 ‘ 𝑚 ) ) | 
						
							| 77 | 76 | breq2d | ⊢ ( 𝑛  =  𝑚  →  ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑛 )  ↔  0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑚 ) ) ) | 
						
							| 78 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑄 ‘ ( 𝑛  +  1 ) )  =  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 79 | 76 78 | breq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑄 ‘ 𝑛 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝑄 ‘ 𝑚 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 80 | 77 79 | anbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑛 )  ∧  ( 𝑄 ‘ 𝑛 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  ↔  ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑚 )  ∧  ( 𝑄 ‘ 𝑚 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 81 | 80 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑛 )  ∧  ( 𝑄 ‘ 𝑛 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑚 )  ∧  ( 𝑄 ‘ 𝑚 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 82 | 11 81 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑚 )  ∧  ( 𝑄 ‘ 𝑚 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 83 | 82 | simpld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑚 ) ) | 
						
							| 84 |  | breq2 | ⊢ ( 𝑓  =  ( 𝑄 ‘ 𝑚 )  →  ( 0𝑝  ∘r   ≤  𝑓  ↔  0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑚 ) ) ) | 
						
							| 85 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑄 ‘ 𝑚 )  →  ( 𝑓 : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 86 | 84 85 | imbi12d | ⊢ ( 𝑓  =  ( 𝑄 ‘ 𝑚 )  →  ( ( 0𝑝  ∘r   ≤  𝑓  →  𝑓 : ℝ ⟶ ( 0 [,) +∞ ) )  ↔  ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑚 )  →  ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) ) | 
						
							| 87 | 86 72 | vtoclga | ⊢ ( ( 𝑄 ‘ 𝑚 )  ∈  dom  ∫1  →  ( 0𝑝  ∘r   ≤  ( 𝑄 ‘ 𝑚 )  →  ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 88 | 75 83 87 | sylc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 89 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 90 | 29 74 88 89 89 18 | off | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 91 |  | 0plef | ⊢ ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ℝ  ∧  0𝑝  ∘r   ≤  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) ) ) | 
						
							| 92 | 90 91 | sylib | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ℝ  ∧  0𝑝  ∘r   ≤  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) ) ) | 
						
							| 93 | 92 | simprd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  0𝑝  ∘r   ≤  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) ) | 
						
							| 94 | 7 | ffnd | ⊢ ( 𝜑  →  𝑃  Fn  ℕ ) | 
						
							| 95 | 10 | ffnd | ⊢ ( 𝜑  →  𝑄  Fn  ℕ ) | 
						
							| 96 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  =  ( 𝑃 ‘ 𝑚 ) ) | 
						
							| 97 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ 𝑚 )  =  ( 𝑄 ‘ 𝑚 ) ) | 
						
							| 98 | 94 95 25 25 26 96 97 | ofval | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 )  =  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) ) | 
						
							| 99 | 93 98 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  0𝑝  ∘r   ≤  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ) | 
						
							| 100 |  | i1ff | ⊢ ( ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1  →  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | 
						
							| 101 | 30 100 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | 
						
							| 102 | 101 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 103 |  | i1ff | ⊢ ( ( 𝑄 ‘ 𝑚 )  ∈  dom  ∫1  →  ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | 
						
							| 104 | 75 103 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | 
						
							| 105 | 104 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 106 |  | peano2nn | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 107 |  | ffvelcdm | ⊢ ( ( 𝑃 : ℕ ⟶ dom  ∫1  ∧  ( 𝑚  +  1 )  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 108 | 7 106 107 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 109 |  | i1ff | ⊢ ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1  →  ( 𝑃 ‘ ( 𝑚  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 110 | 108 109 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 111 | 110 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 112 |  | ffvelcdm | ⊢ ( ( 𝑄 : ℕ ⟶ dom  ∫1  ∧  ( 𝑚  +  1 )  ∈  ℕ )  →  ( 𝑄 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 113 | 10 106 112 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 114 |  | i1ff | ⊢ ( ( 𝑄 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1  →  ( 𝑄 ‘ ( 𝑚  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 115 | 113 114 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ ( 𝑚  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 116 | 115 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 117 | 37 | simprd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 118 | 101 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  Fn  ℝ ) | 
						
							| 119 | 110 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) )  Fn  ℝ ) | 
						
							| 120 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 121 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 122 | 118 119 89 89 18 120 121 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) )  ↔  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) ) | 
						
							| 123 | 117 122 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 124 | 123 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 125 | 82 | simprd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ 𝑚 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 126 | 104 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ 𝑚 )  Fn  ℝ ) | 
						
							| 127 | 115 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ ( 𝑚  +  1 ) )  Fn  ℝ ) | 
						
							| 128 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 129 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  =  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 130 | 126 127 89 89 18 128 129 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑄 ‘ 𝑚 )  ∘r   ≤  ( 𝑄 ‘ ( 𝑚  +  1 ) )  ↔  ∀ 𝑦  ∈  ℝ ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) ) | 
						
							| 131 | 125 130 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑦  ∈  ℝ ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 132 | 131 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 133 | 102 105 111 116 124 132 | le2addd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) )  ≤  ( ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) ) | 
						
							| 134 | 133 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑦  ∈  ℝ ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) )  ≤  ( ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) ) | 
						
							| 135 | 30 75 | i1fadd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) )  ∈  dom  ∫1 ) | 
						
							| 136 |  | i1ff | ⊢ ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) )  ∈  dom  ∫1  →  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ℝ ) | 
						
							| 137 |  | ffn | ⊢ ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ℝ  →  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) )  Fn  ℝ ) | 
						
							| 138 | 135 136 137 | 3syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) )  Fn  ℝ ) | 
						
							| 139 | 108 113 | i1fadd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) )  ∈  dom  ∫1 ) | 
						
							| 140 |  | i1ff | ⊢ ( ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) )  ∈  dom  ∫1  →  ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) : ℝ ⟶ ℝ ) | 
						
							| 141 | 139 140 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) : ℝ ⟶ ℝ ) | 
						
							| 142 | 141 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) )  Fn  ℝ ) | 
						
							| 143 | 118 126 89 89 18 120 128 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) ‘ 𝑦 )  =  ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 144 | 119 127 89 89 18 121 129 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) ‘ 𝑦 )  =  ( ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) ) | 
						
							| 145 | 138 142 89 89 18 143 144 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) )  ∘r   ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) )  ↔  ∀ 𝑦  ∈  ℝ ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) )  ≤  ( ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 146 | 134 145 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) )  ∘r   ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 147 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) )  =  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 148 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ℕ )  →  ( 𝑄 ‘ ( 𝑚  +  1 ) )  =  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 149 | 94 95 25 25 26 147 148 | ofval | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ℕ )  →  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ ( 𝑚  +  1 ) )  =  ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 150 | 106 149 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ ( 𝑚  +  1 ) )  =  ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∘f   +  ( 𝑄 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 151 | 146 98 150 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 )  ∘r   ≤  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 152 | 99 151 | jca | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝  ∘r   ≤  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 )  ∧  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 )  ∘r   ≤  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 153 | 152 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℕ ( 0𝑝  ∘r   ≤  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 )  ∧  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 )  ∘r   ≤  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 154 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 )  =  ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ) | 
						
							| 155 | 154 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 156 | 155 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 157 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 158 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  1  ∈  ℤ ) | 
						
							| 159 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 160 | 159 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ) | 
						
							| 161 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 162 | 160 161 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 163 | 162 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 164 | 9 163 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 165 | 24 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) )  ∈  V | 
						
							| 166 | 165 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) )  ∈  V ) | 
						
							| 167 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 168 | 167 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ) | 
						
							| 169 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 170 | 168 169 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 171 | 170 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐺 ‘ 𝑥 )  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 172 | 12 171 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 173 | 31 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 174 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 175 |  | fvex | ⊢ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ∈  V | 
						
							| 176 | 173 174 175 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 177 | 176 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 178 | 102 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 179 | 177 178 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 180 | 179 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 181 | 76 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 182 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 183 |  | fvex | ⊢ ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 )  ∈  V | 
						
							| 184 | 181 182 183 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 185 | 184 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 186 | 105 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 187 | 185 186 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 188 | 187 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 189 | 98 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) ‘ 𝑦 ) ) | 
						
							| 190 | 189 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) ‘ 𝑦 ) ) | 
						
							| 191 | 190 143 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 192 | 191 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 193 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 194 |  | fvex | ⊢ ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 )  ∈  V | 
						
							| 195 | 155 193 194 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 196 | 195 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 197 | 177 185 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  +  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) )  =  ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  +  ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 198 | 192 196 197 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  +  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ) ) | 
						
							| 199 | 157 158 164 166 172 180 188 198 | climadd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 200 | 156 199 | eqbrtrrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) )  ⇝  ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 201 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℝ ) | 
						
							| 202 | 5 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ℝ ) | 
						
							| 203 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 204 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 205 | 201 202 17 17 18 203 204 | ofval | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ( 𝐹  ∘f   +  𝐺 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 206 | 200 205 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) )  ⇝  ( ( 𝐹  ∘f   +  𝐺 ) ‘ 𝑦 ) ) | 
						
							| 207 | 206 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℝ ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) )  ⇝  ( ( 𝐹  ∘f   +  𝐺 ) ‘ 𝑦 ) ) | 
						
							| 208 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑗  →  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) )  =  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑗 ) ) ) | 
						
							| 209 | 208 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑗 ) ) ) | 
						
							| 210 | 3 6 | readdcld | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 211 | 98 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) )  =  ( ∫1 ‘ ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) ) ) | 
						
							| 212 | 30 75 | itg1add | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( ( 𝑃 ‘ 𝑚 )  ∘f   +  ( 𝑄 ‘ 𝑚 ) ) )  =  ( ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  +  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) ) | 
						
							| 213 | 211 212 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) )  =  ( ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  +  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) ) | 
						
							| 214 |  | itg1cl | ⊢ ( ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 215 | 30 214 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 216 |  | itg1cl | ⊢ ( ( 𝑄 ‘ 𝑚 )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 217 | 75 216 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 218 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 219 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 220 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 221 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 222 |  | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 223 | 220 221 222 | sylancl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 224 | 1 2 7 8 9 | itg2i1fseqle | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  𝐹 ) | 
						
							| 225 |  | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1  ∧  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 226 | 223 30 224 225 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 227 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 228 |  | fss | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 229 | 227 221 228 | sylancl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 230 | 4 5 10 11 12 | itg2i1fseqle | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑄 ‘ 𝑚 )  ∘r   ≤  𝐺 ) | 
						
							| 231 |  | itg2ub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑄 ‘ 𝑚 )  ∈  dom  ∫1  ∧  ( 𝑄 ‘ 𝑚 )  ∘r   ≤  𝐺 )  →  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 232 | 229 75 230 231 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 233 | 215 217 218 219 226 232 | le2addd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  +  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 234 | 213 233 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 235 | 234 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℕ ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 236 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑘  →  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) )  =  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑘 ) ) ) | 
						
							| 237 | 236 | breq1d | ⊢ ( 𝑚  =  𝑘  →  ( ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ↔  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑘 ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 238 | 237 | rspccva | ⊢ ( ( ∀ 𝑚  ∈  ℕ ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑘 ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 239 | 235 238 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑘 ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 240 | 13 19 27 153 207 209 210 239 | itg2i1fseq2 | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) )  ⇝  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) ) ) | 
						
							| 241 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 242 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 243 | 1 2 7 8 9 242 3 | itg2i1fseq3 | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) )  ⇝  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 244 | 24 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) )  ∈  V | 
						
							| 245 | 244 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) )  ∈  V ) | 
						
							| 246 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) | 
						
							| 247 | 4 5 10 11 12 246 6 | itg2i1fseq3 | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) )  ⇝  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 248 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑚  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) )  =  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 249 |  | fvex | ⊢ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  ∈  V | 
						
							| 250 | 248 242 249 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 )  =  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 251 | 250 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 )  =  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 252 | 215 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 253 | 251 252 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 254 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑚  →  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) )  =  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) | 
						
							| 255 |  | fvex | ⊢ ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) )  ∈  V | 
						
							| 256 | 254 246 255 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 )  =  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) | 
						
							| 257 | 256 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 )  =  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) | 
						
							| 258 | 217 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 259 | 257 258 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 260 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑚  →  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑗 ) )  =  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ) ) | 
						
							| 261 |  | fvex | ⊢ ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) )  ∈  V | 
						
							| 262 | 260 209 261 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) ) ‘ 𝑚 )  =  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ) ) | 
						
							| 263 | 262 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) ) ‘ 𝑚 )  =  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑚 ) ) ) | 
						
							| 264 | 251 257 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 )  +  ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 ) )  =  ( ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  +  ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) ) | 
						
							| 265 | 213 263 264 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) ) ‘ 𝑚 )  =  ( ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 )  +  ( ( 𝑘  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 ) ) ) | 
						
							| 266 | 157 241 243 245 247 253 259 265 | climadd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) )  ⇝  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 267 |  | climuni | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) )  ⇝  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( ( 𝑃  ∘f   ∘f   +  𝑄 ) ‘ 𝑛 ) ) )  ⇝  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) )  →  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) )  =  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 268 | 240 266 267 | syl2anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹  ∘f   +  𝐺 ) )  =  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) |