| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  =  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } | 
						
							| 2 | 1 | itg2val | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  =  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 3 | 1 | itg2lcl | ⊢ { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  ⊆  ℝ* | 
						
							| 4 |  | supxrcl | ⊢ ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  ⊆  ℝ*  →  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  )  ∈  ℝ* | 
						
							| 6 | 2 5 | eqeltrdi | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) |