Step |
Hyp |
Ref |
Expression |
1 |
|
itg2cn.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
2 |
|
itg2cn.2 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
3 |
|
itg2cn.3 |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
4 |
|
itg2cn.4 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
5 |
4
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ+ ) |
6 |
3 5
|
ltsubrpd |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) < ( ∫2 ‘ 𝐹 ) ) |
7 |
5
|
rpred |
⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ ) |
8 |
3 7
|
resubcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ∈ ℝ ) |
9 |
8 3
|
ltnled |
⊢ ( 𝜑 → ( ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
10 |
6 9
|
mpbid |
⊢ ( 𝜑 → ¬ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
11 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
12 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
14 |
13
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
15 |
14
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
16 |
13
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
17 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
15 16 17
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
19 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
20 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
21 |
18 19 20
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
22 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
23 |
22
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
24 |
|
itg2cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ* ) |
25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ* ) |
26 |
25
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) : ℕ ⟶ ℝ* ) |
27 |
26
|
frnd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ⊆ ℝ* ) |
28 |
8
|
rexrd |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ∈ ℝ* ) |
29 |
|
supxrleub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ⊆ ℝ* ∧ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ∈ ℝ* ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
30 |
27 28 29
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
31 |
1 2 3
|
itg2cnlem1 |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = ( ∫2 ‘ 𝐹 ) ) |
32 |
31
|
breq1d |
⊢ ( 𝜑 → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
33 |
26
|
ffnd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) Fn ℕ ) |
34 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) → ( 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
35 |
34
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
36 |
|
breq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
37 |
36
|
ifbid |
⊢ ( 𝑛 = 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
38 |
37
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
39 |
38
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
40 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
41 |
|
fvex |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ V |
42 |
39 40 41
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
43 |
42
|
breq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
44 |
43
|
ralbiia |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
45 |
35 44
|
bitrdi |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
46 |
33 45
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
47 |
30 32 46
|
3bitr3d |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
48 |
10 47
|
mtbid |
⊢ ( 𝜑 → ¬ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
49 |
|
rexnal |
⊢ ( ∃ 𝑚 ∈ ℕ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ¬ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
50 |
48 49
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
51 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
52 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → 𝐹 ∈ MblFn ) |
53 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
54 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → 𝐶 ∈ ℝ+ ) |
55 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → 𝑚 ∈ ℕ ) |
56 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
57 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
58 |
57
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
59 |
58 57
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
60 |
59
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
61 |
60
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
62 |
61
|
breq1i |
⊢ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
63 |
56 62
|
sylnib |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ¬ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
64 |
51 52 53 54 55 63
|
itg2cnlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
65 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑢 ↔ 𝑦 ∈ 𝑢 ) ) |
66 |
65 57
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
67 |
66
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
68 |
67
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
69 |
68
|
breq1i |
⊢ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ↔ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) |
70 |
69
|
imbi2i |
⊢ ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ↔ ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
71 |
70
|
ralbii |
⊢ ( ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ↔ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
72 |
71
|
rexbii |
⊢ ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
73 |
64 72
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ) |
74 |
50 73
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ) |