| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2cn.1 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 2 |  | itg2cn.2 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 3 |  | itg2cn.3 | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 4 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 5 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 6 | 4 5 | ifex | ⊢ if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 8 | 7 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 9 | 6 8 | mpan2 | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 10 | 9 | mpteq2dv | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 11 | 10 | rneqd | ⊢ ( 𝑥  ∈  ℝ  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) )  =  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 12 | 11 | supeq1d | ⊢ ( 𝑥  ∈  ℝ  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) ) | 
						
							| 13 | 12 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑦 sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑥 ℕ | 
						
							| 16 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 17 | 15 16 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑥 𝑚 | 
						
							| 19 | 17 18 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 21 | 19 20 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) | 
						
							| 22 | 15 21 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 23 | 22 | nfrn | ⊢ Ⅎ 𝑥 ran  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 26 | 23 24 25 | nfsup | ⊢ Ⅎ 𝑥 sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) ) | 
						
							| 28 | 27 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) ) ) | 
						
							| 29 |  | breq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛  ↔  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ) ) | 
						
							| 30 | 29 | ifbid | ⊢ ( 𝑛  =  𝑚  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 31 | 30 | mpteq2dv | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 32 | 31 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) ) | 
						
							| 33 | 32 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 35 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 36 | 35 | mptex | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∈  V | 
						
							| 37 | 31 34 36 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 38 | 37 | fveq1d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) ) | 
						
							| 39 | 38 | mpteq2ia | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) ) | 
						
							| 40 | 33 39 | eqtr4i | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 41 | 28 40 | eqtrdi | ⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 42 | 41 | rneqd | ⊢ ( 𝑥  =  𝑦  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 43 | 42 | supeq1d | ⊢ ( 𝑥  =  𝑦  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 44 | 14 26 43 | cbvmpt | ⊢ ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑦  ∈  ℝ  ↦  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 45 | 13 44 | eqtr3i | ⊢ ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) )  =  ( 𝑦  ∈  ℝ  ↦  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 47 | 46 | breq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚  ↔  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 48 | 47 46 | ifbieq1d | ⊢ ( 𝑥  =  𝑦  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  if ( ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 49 | 48 | cbvmptv | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 50 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 51 |  | nnre | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ ) | 
						
							| 52 | 51 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  𝑚  ∈  ℝ ) | 
						
							| 53 | 52 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  𝑚  ∈  ℝ* ) | 
						
							| 54 |  | elioopnf | ⊢ ( 𝑚  ∈  ℝ*  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑚 (,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  𝑚  <  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑚 (,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  𝑚  <  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 57 | 1 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℝ ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  𝐹  Fn  ℝ ) | 
						
							| 59 |  | elpreima | ⊢ ( 𝐹  Fn  ℝ  →  ( 𝑦  ∈  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑚 (,) +∞ ) ) ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑚 (,) +∞ ) ) ) ) | 
						
							| 61 | 56 60 | mpbirand | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) )  ↔  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑚 (,) +∞ ) ) ) | 
						
							| 62 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 63 |  | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ℝ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 64 | 1 62 63 | sylancl | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 66 | 65 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 67 | 66 | biantrurd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑚  <  ( 𝐹 ‘ 𝑦 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  𝑚  <  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 68 | 55 61 67 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) )  ↔  𝑚  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 69 | 68 | notbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ¬  𝑦  ∈  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) )  ↔  ¬  𝑚  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 70 |  | eldif | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ¬  𝑦  ∈  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ) | 
						
							| 71 | 70 | baib | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↔  ¬  𝑦  ∈  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↔  ¬  𝑦  ∈  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ) | 
						
							| 73 | 66 52 | lenltd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑦 )  ≤  𝑚  ↔  ¬  𝑚  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 74 | 69 72 73 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↔  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 75 | 74 | ifbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  =  if ( ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 76 | 75 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 77 | 49 50 76 | 3eqtr4a | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 )  =  ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 78 |  | difss | ⊢ ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ⊆  ℝ | 
						
							| 79 | 78 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ⊆  ℝ ) | 
						
							| 80 |  | rembl | ⊢ ℝ  ∈  dom  vol | 
						
							| 81 | 80 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ℝ  ∈  dom  vol ) | 
						
							| 82 |  | fvex | ⊢ ( 𝐹 ‘ 𝑦 )  ∈  V | 
						
							| 83 | 82 5 | ifex | ⊢ if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  V | 
						
							| 84 | 83 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) )  →  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  ∈  V ) | 
						
							| 85 |  | eldifn | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) )  →  ¬  𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ( ℝ  ∖  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ) )  →  ¬  𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ) | 
						
							| 87 | 86 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ( ℝ  ∖  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ) )  →  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  =  0 ) | 
						
							| 88 |  | iftrue | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  →  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 89 | 88 | mpteq2ia | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↦  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  =  ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↦  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 90 |  | resmpt | ⊢ ( ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ⊆  ℝ  →  ( ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) )  ↾  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) )  =  ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 91 | 78 90 | ax-mp | ⊢ ( ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) )  ↾  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) )  =  ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↦  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 92 | 89 91 | eqtr4i | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↦  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  =  ( ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) )  ↾  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ) | 
						
							| 93 | 1 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 94 | 93 2 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) )  ∈  MblFn ) | 
						
							| 95 |  | mbfima | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : ℝ ⟶ ℝ )  →  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 96 | 2 64 95 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 97 |  | cmmbl | ⊢ ( ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) )  ∈  dom  vol  →  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ∈  dom  vol ) | 
						
							| 98 | 96 97 | syl | ⊢ ( 𝜑  →  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ∈  dom  vol ) | 
						
							| 99 |  | mbfres | ⊢ ( ( ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) )  ∈  MblFn  ∧  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ∈  dom  vol )  →  ( ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) )  ↾  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) )  ∈  MblFn ) | 
						
							| 100 | 94 98 99 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) )  ↾  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) )  ∈  MblFn ) | 
						
							| 101 | 92 100 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↦  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) )  ↦  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 103 | 79 81 84 87 102 | mbfss | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑦  ∈  ℝ  ↦  if ( 𝑦  ∈  ( ℝ  ∖  ( ◡ 𝐹  “  ( 𝑚 (,) +∞ ) ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 104 | 77 103 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 )  ∈  MblFn ) | 
						
							| 105 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 106 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 107 |  | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ∧  0  ∈  ( 0 [,) +∞ ) )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 108 | 105 106 107 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 109 | 108 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 110 | 50 109 | fmpt3d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 111 |  | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 112 | 105 111 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 113 | 112 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 114 | 113 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 116 | 115 | leidd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 117 |  | iftrue | ⊢ ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 118 | 117 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 119 | 51 | ad3antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  𝑚  ∈  ℝ ) | 
						
							| 120 |  | peano2re | ⊢ ( 𝑚  ∈  ℝ  →  ( 𝑚  +  1 )  ∈  ℝ ) | 
						
							| 121 | 119 120 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  ( 𝑚  +  1 )  ∈  ℝ ) | 
						
							| 122 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ) | 
						
							| 123 | 119 | lep1d | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  𝑚  ≤  ( 𝑚  +  1 ) ) | 
						
							| 124 | 115 119 121 122 123 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ) | 
						
							| 125 | 124 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 126 | 116 118 125 | 3brtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 127 |  | iffalse | ⊢ ( ¬  ( 𝐹 ‘ 𝑥 )  ≤  𝑚  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  0 ) | 
						
							| 128 | 127 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  0 ) | 
						
							| 129 | 112 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  0  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 130 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 131 |  | breq2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  →  ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  0  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 132 |  | breq2 | ⊢ ( 0  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  →  ( 0  ≤  0  ↔  0  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 133 | 131 132 | ifboth | ⊢ ( ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ∧  0  ≤  0 )  →  0  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 134 | 129 130 133 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  0  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 135 | 134 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  0  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  0  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 137 | 128 136 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 138 | 126 137 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 139 | 138 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑥  ∈  ℝ if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 140 | 4 5 | ifex | ⊢ if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 141 | 140 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V ) | 
						
							| 142 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 143 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 144 | 81 109 141 142 143 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ↔  ∀ 𝑥  ∈  ℝ if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 145 | 139 144 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 146 |  | peano2nn | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 147 | 146 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 148 |  | breq2 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛  ↔  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ) ) | 
						
							| 149 | 148 | ifbid | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 150 | 149 | mpteq2dv | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 151 | 35 | mptex | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∈  V | 
						
							| 152 | 150 34 151 | fvmpt | ⊢ ( ( 𝑚  +  1 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 153 | 147 152 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  +  1 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 154 | 145 50 153 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 )  ∘r   ≤  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 155 | 64 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 156 | 37 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 157 | 156 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) ) | 
						
							| 158 | 113 | leidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 159 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  →  ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 160 |  | breq1 | ⊢ ( 0  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  →  ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 161 | 159 160 | ifboth | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 )  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 162 | 158 129 161 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 163 | 162 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 164 | 163 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑥  ∈  ℝ if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 165 | 35 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 166 | 4 5 | ifex | ⊢ if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 167 | 166 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V ) | 
						
							| 168 | 1 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 169 | 168 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 170 | 165 167 114 142 169 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 171 | 164 170 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐹 ) | 
						
							| 172 | 167 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) : ℝ ⟶ V ) | 
						
							| 173 | 172 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  Fn  ℝ ) | 
						
							| 174 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐹  Fn  ℝ ) | 
						
							| 175 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 176 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 ) ) | 
						
							| 177 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 178 | 173 174 165 165 175 176 177 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐹  ↔  ∀ 𝑦  ∈  ℝ ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 179 | 171 178 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑦  ∈  ℝ ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 180 | 179 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 181 | 180 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 182 | 157 181 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 183 | 182 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ∀ 𝑚  ∈  ℕ ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 184 |  | brralrspcev | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  ∀ 𝑚  ∈  ℕ ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  ℕ ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 )  ≤  𝑧 ) | 
						
							| 185 | 155 183 184 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  ℕ ( ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 )  ≤  𝑧 ) | 
						
							| 186 | 31 | fveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 187 | 186 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 188 | 37 | fveq2d | ⊢ ( 𝑚  ∈  ℕ  →  ( ∫2 ‘ ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 189 | 188 | mpteq2ia | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 190 | 187 189 | eqtr4i | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ) ) | 
						
							| 191 | 190 | rneqi | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) )  =  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ) ) | 
						
							| 192 | 191 | supeq1i | ⊢ sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 193 | 45 104 110 154 185 192 | itg2mono | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) ) )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 194 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 195 | 30 194 166 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 196 | 195 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 197 | 162 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 198 | 196 197 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 199 | 198 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 200 | 6 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  V ) | 
						
							| 201 | 200 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) : ℕ ⟶ V ) | 
						
							| 202 | 201 | ffnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  Fn  ℕ ) | 
						
							| 203 |  | breq1 | ⊢ ( 𝑤  =  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  →  ( 𝑤  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 204 | 203 | ralrn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  Fn  ℕ  →  ( ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 205 | 202 204 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 206 | 199 205 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 207 | 113 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 208 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 209 |  | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  ℝ ) | 
						
							| 210 | 207 208 209 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  ℝ ) | 
						
							| 211 | 210 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) : ℕ ⟶ ℝ ) | 
						
							| 212 | 211 | frnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ⊆  ℝ ) | 
						
							| 213 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 214 | 194 210 | dmmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  dom  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ℕ ) | 
						
							| 215 | 213 214 | eleqtrrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  1  ∈  dom  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 216 |  | n0i | ⊢ ( 1  ∈  dom  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  →  ¬  dom  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ∅ ) | 
						
							| 217 |  | dm0rn0 | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ∅ ) | 
						
							| 218 | 217 | necon3bbii | ⊢ ( ¬  dom  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ≠  ∅ ) | 
						
							| 219 | 216 218 | sylib | ⊢ ( 1  ∈  dom  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ≠  ∅ ) | 
						
							| 220 | 215 219 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ≠  ∅ ) | 
						
							| 221 |  | brralrspcev | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  𝑧 ) | 
						
							| 222 | 113 206 221 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  𝑧 ) | 
						
							| 223 |  | suprleub | ⊢ ( ( ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ≠  ∅  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  𝑧 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ℝ )  →  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 224 | 212 220 222 113 223 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) 𝑤  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 225 | 206 224 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 226 |  | arch | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  →  ∃ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑥 )  <  𝑚 ) | 
						
							| 227 | 113 226 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑥 )  <  𝑚 ) | 
						
							| 228 | 195 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑚 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  =  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 229 |  | ltle | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  𝑚  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑥 )  <  𝑚  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ) ) | 
						
							| 230 | 113 51 229 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑥 )  <  𝑚  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ) ) | 
						
							| 231 | 230 | impr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑚 ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ) | 
						
							| 232 | 231 | iftrued | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑚 ) )  →  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑚 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 233 | 228 232 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑚 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 234 | 202 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑚 ) )  →  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  Fn  ℕ ) | 
						
							| 235 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑚 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 236 |  | fnfvelrn | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  Fn  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 237 | 234 235 236 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑚 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ‘ 𝑚 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 238 | 233 237 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑚 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 239 | 227 238 | rexlimddv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 240 | 212 220 222 239 | suprubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) ) | 
						
							| 241 | 212 220 222 | suprcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 242 | 241 113 | letri3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  )  ≤  ( 𝐹 ‘ 𝑥 )  ∧  ( 𝐹 ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) ) ) ) | 
						
							| 243 | 225 240 242 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 244 | 243 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 245 | 244 168 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) )  =  𝐹 ) | 
						
							| 246 | 245 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ,  ℝ ,   <  ) ) )  =  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 247 | 193 246 | eqtr3d | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝐹 ‘ 𝑥 )  ≤  𝑛 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) ) ,  ℝ* ,   <  )  =  ( ∫2 ‘ 𝐹 ) ) |