Step |
Hyp |
Ref |
Expression |
1 |
|
itg2cn.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
2 |
|
itg2cn.2 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
3 |
|
itg2cn.3 |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
4 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
5 |
|
c0ex |
⊢ 0 ∈ V |
6 |
4 5
|
ifex |
⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
7 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
8 |
7
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
9 |
6 8
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
10 |
9
|
mpteq2dv |
⊢ ( 𝑥 ∈ ℝ → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
11 |
10
|
rneqd |
⊢ ( 𝑥 ∈ ℝ → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
12 |
11
|
supeq1d |
⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
13 |
12
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑦 sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑥 ℕ |
16 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
17 |
15 16
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
19 |
17 18
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
21 |
19 20
|
nffv |
⊢ Ⅎ 𝑥 ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) |
22 |
15 21
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
23 |
22
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
26 |
23 24 25
|
nfsup |
⊢ Ⅎ 𝑥 sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) |
27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
28 |
27
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) ) |
29 |
|
breq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
30 |
29
|
ifbid |
⊢ ( 𝑛 = 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
31 |
30
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
32 |
31
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
33 |
32
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
34 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
35 |
|
reex |
⊢ ℝ ∈ V |
36 |
35
|
mptex |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ V |
37 |
31 34 36
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
38 |
37
|
fveq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
39 |
38
|
mpteq2ia |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
40 |
33 39
|
eqtr4i |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
41 |
28 40
|
eqtrdi |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
42 |
41
|
rneqd |
⊢ ( 𝑥 = 𝑦 → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
43 |
42
|
supeq1d |
⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
44 |
14 26 43
|
cbvmpt |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
45 |
13 44
|
eqtr3i |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
46 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
47 |
46
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
48 |
47 46
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
49 |
48
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
50 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
51 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
52 |
51
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑚 ∈ ℝ ) |
53 |
52
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑚 ∈ ℝ* ) |
54 |
|
elioopnf |
⊢ ( 𝑚 ∈ ℝ* → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) |
55 |
53 54
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) |
56 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
57 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn ℝ ) |
59 |
|
elpreima |
⊢ ( 𝐹 Fn ℝ → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) ) |
60 |
58 59
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) ) |
61 |
56 60
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) |
62 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
63 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
64 |
1 62 63
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
66 |
65
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
67 |
66
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑚 < ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) |
68 |
55 61 67
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
69 |
68
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ¬ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
70 |
|
eldif |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
71 |
70
|
baib |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
73 |
66 52
|
lenltd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ↔ ¬ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
74 |
69 72 73
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
75 |
74
|
ifbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
76 |
75
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
77 |
49 50 76
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
78 |
|
difss |
⊢ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ |
79 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ ) |
80 |
|
rembl |
⊢ ℝ ∈ dom vol |
81 |
80
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ dom vol ) |
82 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
83 |
82 5
|
ifex |
⊢ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V |
84 |
83
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V ) |
85 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) → ¬ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
86 |
85
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ) → ¬ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
87 |
86
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = 0 ) |
88 |
|
iftrue |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = ( 𝐹 ‘ 𝑦 ) ) |
89 |
88
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) |
90 |
|
resmpt |
⊢ ( ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
91 |
78 90
|
ax-mp |
⊢ ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) |
92 |
89 91
|
eqtr4i |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
93 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
94 |
93 2
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ) |
95 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol ) |
96 |
2 64 95
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol ) |
97 |
|
cmmbl |
⊢ ( ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) |
98 |
96 97
|
syl |
⊢ ( 𝜑 → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) |
99 |
|
mbfres |
⊢ ( ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ∧ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ∈ MblFn ) |
100 |
94 98 99
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ∈ MblFn ) |
101 |
92 100
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
103 |
79 81 84 87 102
|
mbfss |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
104 |
77 103
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ∈ MblFn ) |
105 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
106 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
107 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ∧ 0 ∈ ( 0 [,) +∞ ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
108 |
105 106 107
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
109 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
110 |
50 109
|
fmpt3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
111 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
112 |
105 111
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
113 |
112
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
114 |
113
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
115 |
114
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
116 |
115
|
leidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
117 |
|
iftrue |
⊢ ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
118 |
117
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
119 |
51
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 𝑚 ∈ ℝ ) |
120 |
|
peano2re |
⊢ ( 𝑚 ∈ ℝ → ( 𝑚 + 1 ) ∈ ℝ ) |
121 |
119 120
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝑚 + 1 ) ∈ ℝ ) |
122 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) |
123 |
119
|
lep1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 𝑚 ≤ ( 𝑚 + 1 ) ) |
124 |
115 119 121 122 123
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) ) |
125 |
124
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
126 |
116 118 125
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
127 |
|
iffalse |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 ) |
128 |
127
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 ) |
129 |
112
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
130 |
|
0le0 |
⊢ 0 ≤ 0 |
131 |
|
breq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
132 |
|
breq2 |
⊢ ( 0 = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
133 |
131 132
|
ifboth |
⊢ ( ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
134 |
129 130 133
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
135 |
134
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
136 |
135
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
137 |
128 136
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
138 |
126 137
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
139 |
138
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
140 |
4 5
|
ifex |
⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
141 |
140
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
142 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
143 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
144 |
81 109 141 142 143
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
145 |
139 144
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
146 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
147 |
146
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
148 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) ) ) |
149 |
148
|
ifbid |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
150 |
149
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
151 |
35
|
mptex |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ V |
152 |
150 34 151
|
fvmpt |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
153 |
147 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
154 |
145 50 153
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ∘r ≤ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) ) |
155 |
64
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
156 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
157 |
156
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
158 |
113
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
159 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
160 |
|
breq1 |
⊢ ( 0 = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
161 |
159 160
|
ifboth |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
162 |
158 129 161
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
163 |
162
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
164 |
163
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
165 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ V ) |
166 |
4 5
|
ifex |
⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
167 |
166
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
168 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
170 |
165 167 114 142 169
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
171 |
164 170
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ) |
172 |
167
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ V ) |
173 |
172
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
174 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 Fn ℝ ) |
175 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
176 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
177 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
178 |
173 174 165 165 175 176 177
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
179 |
171 178
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
180 |
179
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
181 |
180
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
182 |
157 181
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
183 |
182
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
184 |
|
brralrspcev |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
185 |
155 183 184
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
186 |
31
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
187 |
186
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
188 |
37
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ → ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
189 |
188
|
mpteq2ia |
⊢ ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
190 |
187 189
|
eqtr4i |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) |
191 |
190
|
rneqi |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) |
192 |
191
|
supeq1i |
⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) , ℝ* , < ) |
193 |
45 104 110 154 185 192
|
itg2mono |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ) |
194 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
195 |
30 194 166
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
196 |
195
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
197 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
198 |
196 197
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
199 |
198
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
200 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
201 |
200
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℕ ⟶ V ) |
202 |
201
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ) |
203 |
|
breq1 |
⊢ ( 𝑤 = ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) → ( 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
204 |
203
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ → ( ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
205 |
202 204
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
206 |
199 205
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) |
207 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
208 |
|
0re |
⊢ 0 ∈ ℝ |
209 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
210 |
207 208 209
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
211 |
210
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℕ ⟶ ℝ ) |
212 |
211
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ⊆ ℝ ) |
213 |
|
1nn |
⊢ 1 ∈ ℕ |
214 |
194 210
|
dmmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ℕ ) |
215 |
213 214
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
216 |
|
n0i |
⊢ ( 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) → ¬ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ) |
217 |
|
dm0rn0 |
⊢ ( dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ) |
218 |
217
|
necon3bbii |
⊢ ( ¬ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
219 |
216 218
|
sylib |
⊢ ( 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
220 |
215 219
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
221 |
|
brralrspcev |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) |
222 |
113 206 221
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) |
223 |
|
suprleub |
⊢ ( ( ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
224 |
212 220 222 113 223
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
225 |
206 224
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
226 |
|
arch |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) |
227 |
113 226
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) |
228 |
195
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
229 |
|
ltle |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑚 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
230 |
113 51 229
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑚 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
231 |
230
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) |
232 |
231
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
233 |
228 232
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = ( 𝐹 ‘ 𝑥 ) ) |
234 |
202
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ) |
235 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → 𝑚 ∈ ℕ ) |
236 |
|
fnfvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
237 |
234 235 236
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
238 |
233 237
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
239 |
227 238
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
240 |
212 220 222 239
|
suprubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
241 |
212 220 222
|
suprcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ∈ ℝ ) |
242 |
241 113
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑥 ) ↔ ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) ) |
243 |
225 240 242
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑥 ) ) |
244 |
243
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
245 |
244 168
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = 𝐹 ) |
246 |
245
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) = ( ∫2 ‘ 𝐹 ) ) |
247 |
193 246
|
eqtr3d |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = ( ∫2 ‘ 𝐹 ) ) |