| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2lea.1 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 2 |  | itg2lea.2 | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | itg2lea.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 4 |  | itg2lea.4 | ⊢ ( 𝜑  →  ( vol* ‘ 𝐴 )  =  0 ) | 
						
							| 5 |  | itg2eqa.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 6 |  | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 8 |  | itg2cl | ⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 10 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 11 |  | eldifi | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 12 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 13 | 1 11 12 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 14 | 10 13 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 15 | 14 | xrleidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 16 | 15 5 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 17 | 1 2 3 4 16 | itg2lea | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 18 | 5 15 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 19 | 2 1 3 4 18 | itg2lea | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 20 | 7 9 17 19 | xrletrid | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  =  ( ∫2 ‘ 𝐺 ) ) |