Metamath Proof Explorer


Theorem itg2eqa

Description: Approximate equality of integrals. If F = G for almost all x , then S.2 F = S.2 G . (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses itg2lea.1 ( 𝜑𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
itg2lea.2 ( 𝜑𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )
itg2lea.3 ( 𝜑𝐴 ⊆ ℝ )
itg2lea.4 ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 )
itg2eqa.5 ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹𝑥 ) = ( 𝐺𝑥 ) )
Assertion itg2eqa ( 𝜑 → ( ∫2𝐹 ) = ( ∫2𝐺 ) )

Proof

Step Hyp Ref Expression
1 itg2lea.1 ( 𝜑𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
2 itg2lea.2 ( 𝜑𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )
3 itg2lea.3 ( 𝜑𝐴 ⊆ ℝ )
4 itg2lea.4 ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 )
5 itg2eqa.5 ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹𝑥 ) = ( 𝐺𝑥 ) )
6 itg2cl ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2𝐹 ) ∈ ℝ* )
7 1 6 syl ( 𝜑 → ( ∫2𝐹 ) ∈ ℝ* )
8 itg2cl ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2𝐺 ) ∈ ℝ* )
9 2 8 syl ( 𝜑 → ( ∫2𝐺 ) ∈ ℝ* )
10 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
11 eldifi ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 𝑥 ∈ ℝ )
12 ffvelrn ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) )
13 1 11 12 syl2an ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) )
14 10 13 sseldi ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹𝑥 ) ∈ ℝ* )
15 14 xrleidd ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹𝑥 ) ≤ ( 𝐹𝑥 ) )
16 15 5 breqtrd ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹𝑥 ) ≤ ( 𝐺𝑥 ) )
17 1 2 3 4 16 itg2lea ( 𝜑 → ( ∫2𝐹 ) ≤ ( ∫2𝐺 ) )
18 5 15 eqbrtrrd ( ( 𝜑𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺𝑥 ) ≤ ( 𝐹𝑥 ) )
19 2 1 3 4 18 itg2lea ( 𝜑 → ( ∫2𝐺 ) ≤ ( ∫2𝐹 ) )
20 7 9 17 19 xrletrid ( 𝜑 → ( ∫2𝐹 ) = ( ∫2𝐺 ) )