| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg10 | ⊢ ( ∫1 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 2 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 3 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 4 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 5 |  | elicc1 | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑦 )  ≤  +∞ ) ) ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑦 )  ≤  +∞ ) ) | 
						
							| 7 | 6 | simp2bi | ⊢ ( ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑦  ∈  ℝ )  →  0  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 9 | 8 | ralrimiva | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ∀ 𝑦  ∈  ℝ 0  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 10 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 11 |  | fnconstg | ⊢ ( 0  ∈  ℝ  →  ( ℝ  ×  { 0 } )  Fn  ℝ ) | 
						
							| 12 | 10 11 | mp1i | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ℝ  ×  { 0 } )  Fn  ℝ ) | 
						
							| 13 |  | ffn | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  𝐹  Fn  ℝ ) | 
						
							| 14 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ℝ  ∈  V ) | 
						
							| 16 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 17 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 18 | 17 | fvconst2 | ⊢ ( 𝑦  ∈  ℝ  →  ( ( ℝ  ×  { 0 } ) ‘ 𝑦 )  =  0 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑦  ∈  ℝ )  →  ( ( ℝ  ×  { 0 } ) ‘ 𝑦 )  =  0 ) | 
						
							| 20 |  | eqidd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 21 | 12 13 15 15 16 19 20 | ofrfval | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ( ℝ  ×  { 0 } )  ∘r   ≤  𝐹  ↔  ∀ 𝑦  ∈  ℝ 0  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 22 | 9 21 | mpbird | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ℝ  ×  { 0 } )  ∘r   ≤  𝐹 ) | 
						
							| 23 |  | i1f0 | ⊢ ( ℝ  ×  { 0 } )  ∈  dom  ∫1 | 
						
							| 24 |  | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ℝ  ×  { 0 } )  ∈  dom  ∫1  ∧  ( ℝ  ×  { 0 } )  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ( ℝ  ×  { 0 } ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 25 | 23 24 | mp3an2 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ℝ  ×  { 0 } )  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ( ℝ  ×  { 0 } ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 26 | 22 25 | mpdan | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫1 ‘ ( ℝ  ×  { 0 } ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 27 | 1 26 | eqbrtrrid | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  0  ≤  ( ∫2 ‘ 𝐹 ) ) |