Step |
Hyp |
Ref |
Expression |
1 |
|
itg2gt0.1 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
2 |
|
itg2gt0.2 |
⊢ ( 𝜑 → 0 < ( vol ‘ 𝐴 ) ) |
3 |
|
itg2gt0.3 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
4 |
|
itg2gt0.4 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
5 |
|
itg2gt0.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 < ( 𝐹 ‘ 𝑥 ) ) |
6 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
7 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
8 |
7
|
ffvelrni |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
9 |
6 8
|
sselid |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
12 |
4
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
13 |
|
cnvexg |
⊢ ( 𝐹 ∈ V → ◡ 𝐹 ∈ V ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 ∈ V ) |
15 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V ) |
18 |
17
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ V ) |
19 |
18
|
ffnd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ ) |
20 |
|
fniunfv |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → ∪ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) |
22 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
23 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
24 |
3 22 23
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
25 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol ) |
26 |
4 24 25
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol ) |
28 |
27
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ dom vol ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol ) |
31 |
|
iunmbl |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol → ∪ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol ) |
33 |
21 32
|
eqeltrrd |
⊢ ( 𝜑 → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol ) |
34 |
|
mblss |
⊢ ( ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ ) |
35 |
33 34
|
syl |
⊢ ( 𝜑 → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ ) |
36 |
|
ovolcl |
⊢ ( ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* ) |
39 |
|
0xr |
⊢ 0 ∈ ℝ* |
40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → 0 ∈ ℝ* ) |
41 |
|
mblvol |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
42 |
1 41
|
syl |
⊢ ( 𝜑 → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
43 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
44 |
1 43
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
45 |
44
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
46 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
47 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
48 |
46 47
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
49 |
48
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
50 |
45 49
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
51 |
|
nnrecl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) |
52 |
50 5 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) |
53 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝐹 Fn ℝ ) |
55 |
|
elpreima |
⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
56 |
54 55
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
57 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
58 |
57
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
59 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
61 |
60
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ* ) |
62 |
61
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ* ) |
63 |
|
elioopnf |
⊢ ( ( 1 / 𝑘 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) ) |
64 |
62 63
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) ) |
65 |
56 58 64
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) ) |
66 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
67 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) |
68 |
14 67
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) |
70 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 1 / 𝑛 ) (,) +∞ ) = ( ( 1 / 𝑘 ) (,) +∞ ) ) |
72 |
71
|
imaeq2d |
⊢ ( 𝑛 = 𝑘 → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
73 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) |
74 |
72 73
|
fvmptg |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
75 |
66 69 74
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
76 |
75
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ↔ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
77 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
78 |
77
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) ) |
79 |
65 76 78
|
3bitr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ↔ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
80 |
79
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
81 |
52 80
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) |
82 |
81
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
83 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ↔ ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥 ∈ 𝑧 ) |
84 |
|
eleq2 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
85 |
84
|
rexrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥 ∈ 𝑧 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
86 |
19 85
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥 ∈ 𝑧 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
87 |
83 86
|
syl5bb |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
88 |
82 87
|
sylibrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
89 |
88
|
ssrdv |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) |
90 |
|
ovolss |
⊢ ( ( 𝐴 ⊆ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∧ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
91 |
89 35 90
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
92 |
42 91
|
eqbrtrd |
⊢ ( 𝜑 → ( vol ‘ 𝐴 ) ≤ ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol ‘ 𝐴 ) ≤ ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
94 |
|
mblvol |
⊢ ( ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
95 |
33 94
|
syl |
⊢ ( 𝜑 → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
96 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
98 |
|
nnrecre |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ ) |
99 |
97 98
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ ) |
100 |
99
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ* ) |
101 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
103 |
102
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
104 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 ) |
106 |
97
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℝ ) |
107 |
97
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < ( 𝑘 + 1 ) ) |
108 |
|
lerec |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
109 |
102 105 106 107 108
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
110 |
103 109
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) |
111 |
|
iooss1 |
⊢ ( ( ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ* ∧ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) → ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) |
112 |
100 110 111
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) |
113 |
|
imass2 |
⊢ ( ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ⊆ ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
114 |
112 113
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ⊆ ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
115 |
66 68 74
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
116 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V ) |
117 |
14 116
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V ) |
118 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑘 + 1 ) ) ) |
119 |
118
|
oveq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 1 / 𝑛 ) (,) +∞ ) = ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) |
120 |
119
|
imaeq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
121 |
120 73
|
fvmptg |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
122 |
96 117 121
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
123 |
114 115 122
|
3sstr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
124 |
123
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
125 |
|
volsup |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) ) → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ) |
126 |
28 124 125
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ) |
127 |
95 126
|
eqtr3d |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ) |
128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ) |
129 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) |
130 |
66 129 74
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
131 |
130
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
132 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 ∈ ℝ* ) |
133 |
|
nnrecgt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < ( 1 / 𝑘 ) ) |
134 |
133
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < ( 1 / 𝑘 ) ) |
135 |
|
0re |
⊢ 0 ∈ ℝ |
136 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ ) → ( 0 < ( 1 / 𝑘 ) → 0 ≤ ( 1 / 𝑘 ) ) ) |
137 |
135 60 136
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 0 < ( 1 / 𝑘 ) → 0 ≤ ( 1 / 𝑘 ) ) ) |
138 |
134 137
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / 𝑘 ) ) |
139 |
|
elxrge0 |
⊢ ( ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 1 / 𝑘 ) ∈ ℝ* ∧ 0 ≤ ( 1 / 𝑘 ) ) ) |
140 |
61 138 139
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
141 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
142 |
|
ifcl |
⊢ ( ( ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
143 |
140 141 142
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
144 |
143
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
145 |
144
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
146 |
145
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
147 |
|
itg2cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* ) |
148 |
146 147
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* ) |
149 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
150 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
151 |
3 149 150
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
152 |
|
itg2cl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
153 |
151 152
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
154 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
155 |
|
0nrp |
⊢ ¬ 0 ∈ ℝ+ |
156 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) |
157 |
115 29
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ) |
158 |
157
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ) |
159 |
158
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ) |
160 |
156 135
|
eqeltrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ ) |
161 |
60 134
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
162 |
161
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
163 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
164 |
|
itg2const2 |
⊢ ( ( ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ∧ ( 1 / 𝑘 ) ∈ ℝ+ ) → ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ ) ) |
165 |
159 163 164
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ ) ) |
166 |
160 165
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ) |
167 |
|
elrege0 |
⊢ ( ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 1 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑘 ) ) ) |
168 |
60 138 167
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
169 |
168
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
170 |
169
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
171 |
|
itg2const |
⊢ ( ( ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ∧ ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) = ( ( 1 / 𝑘 ) · ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
172 |
159 166 170 171
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) = ( ( 1 / 𝑘 ) · ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
173 |
156 172
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 = ( ( 1 / 𝑘 ) · ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
174 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
175 |
166 174
|
elrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ+ ) |
176 |
163 175
|
rpmulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ( 1 / 𝑘 ) · ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ∈ ℝ+ ) |
177 |
173 176
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 ∈ ℝ+ ) |
178 |
177
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) → 0 ∈ ℝ+ ) ) |
179 |
155 178
|
mtoi |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ¬ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) |
180 |
|
itg2ge0 |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) |
181 |
146 180
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) |
182 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* ) → ( 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) ) |
183 |
39 148 182
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) ) |
184 |
181 183
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
185 |
184
|
ord |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ¬ 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) → 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
186 |
179 185
|
mt3d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) |
187 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
188 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ∈ ℝ ) |
189 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 Fn ℝ ) |
190 |
189 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
191 |
190
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
192 |
191
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 𝑥 ∈ ℝ ) |
193 |
49
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
194 |
192 193
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
195 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ∈ ℝ* ) |
196 |
191
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) |
197 |
|
simpr |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) → ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) |
198 |
63 197
|
syl6bi |
⊢ ( ( 1 / 𝑘 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) → ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) |
199 |
195 196 198
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) |
200 |
188 194 199
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
201 |
48
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
202 |
201
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
203 |
192 202
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
204 |
|
breq1 |
⊢ ( ( 1 / 𝑘 ) = if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) → ( ( 1 / 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
205 |
|
breq1 |
⊢ ( 0 = if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
206 |
204 205
|
ifboth |
⊢ ( ( ( 1 / 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
207 |
200 203 206
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
208 |
207
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
209 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) = 0 ) |
210 |
209
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) = 0 ) |
211 |
202
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
212 |
210 211
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
213 |
208 212
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
214 |
213
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
215 |
214
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
216 |
|
reex |
⊢ ℝ ∈ V |
217 |
216
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
218 |
|
ovex |
⊢ ( 1 / 𝑘 ) ∈ V |
219 |
|
c0ex |
⊢ 0 ∈ V |
220 |
218 219
|
ifex |
⊢ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ V |
221 |
220
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ V ) |
222 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
223 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) |
224 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
225 |
217 221 222 223 224
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
226 |
225
|
biimpar |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r ≤ 𝐹 ) |
227 |
215 226
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r ≤ 𝐹 ) |
228 |
|
itg2le |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r ≤ 𝐹 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
229 |
146 187 227 228
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
230 |
132 148 154 186 229
|
xrltletrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 < ( ∫2 ‘ 𝐹 ) ) |
231 |
230
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 < ( ∫2 ‘ 𝐹 ) ) ) |
232 |
231
|
con3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ¬ 0 < ( ∫2 ‘ 𝐹 ) → ¬ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
233 |
7
|
ffvelrni |
⊢ ( ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ( 0 [,] +∞ ) ) |
234 |
6 233
|
sselid |
⊢ ( ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* ) |
235 |
157 234
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* ) |
236 |
|
xrlenlt |
⊢ ( ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ↔ ¬ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
237 |
235 39 236
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ↔ ¬ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
238 |
232 237
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ¬ 0 < ( ∫2 ‘ 𝐹 ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ) ) |
239 |
238
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ) |
240 |
239
|
an32s |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ) |
241 |
131 240
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) |
242 |
241
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) |
243 |
|
ffn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ V → ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ ) |
244 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( vol ‘ 𝑧 ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
245 |
244
|
breq1d |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( ( vol ‘ 𝑧 ) ≤ 0 ↔ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) ) |
246 |
245
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) ) |
247 |
18 243 246
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) ) |
248 |
247
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) ) |
249 |
242 248
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ) |
250 |
|
ffn |
⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → vol Fn dom vol ) |
251 |
7 250
|
ax-mp |
⊢ vol Fn dom vol |
252 |
28
|
frnd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol ) |
253 |
252
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol ) |
254 |
|
breq1 |
⊢ ( 𝑥 = ( vol ‘ 𝑧 ) → ( 𝑥 ≤ 0 ↔ ( vol ‘ 𝑧 ) ≤ 0 ) ) |
255 |
254
|
ralima |
⊢ ( ( vol Fn dom vol ∧ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol ) → ( ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ) ) |
256 |
251 253 255
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ) ) |
257 |
249 256
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ) |
258 |
|
imassrn |
⊢ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ran vol |
259 |
|
frn |
⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → ran vol ⊆ ( 0 [,] +∞ ) ) |
260 |
7 259
|
ax-mp |
⊢ ran vol ⊆ ( 0 [,] +∞ ) |
261 |
260 6
|
sstri |
⊢ ran vol ⊆ ℝ* |
262 |
258 261
|
sstri |
⊢ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ℝ* |
263 |
|
supxrleub |
⊢ ( ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ℝ* ∧ 0 ∈ ℝ* ) → ( sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ) ) |
264 |
262 39 263
|
mp2an |
⊢ ( sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ) |
265 |
257 264
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 ) |
266 |
128 265
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ≤ 0 ) |
267 |
11 38 40 93 266
|
xrletrd |
⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol ‘ 𝐴 ) ≤ 0 ) |
268 |
267
|
ex |
⊢ ( 𝜑 → ( ¬ 0 < ( ∫2 ‘ 𝐹 ) → ( vol ‘ 𝐴 ) ≤ 0 ) ) |
269 |
|
xrlenlt |
⊢ ( ( ( vol ‘ 𝐴 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol ‘ 𝐴 ) ≤ 0 ↔ ¬ 0 < ( vol ‘ 𝐴 ) ) ) |
270 |
10 39 269
|
sylancl |
⊢ ( 𝜑 → ( ( vol ‘ 𝐴 ) ≤ 0 ↔ ¬ 0 < ( vol ‘ 𝐴 ) ) ) |
271 |
268 270
|
sylibd |
⊢ ( 𝜑 → ( ¬ 0 < ( ∫2 ‘ 𝐹 ) → ¬ 0 < ( vol ‘ 𝐴 ) ) ) |
272 |
2 271
|
mt4d |
⊢ ( 𝜑 → 0 < ( ∫2 ‘ 𝐹 ) ) |