Metamath Proof Explorer


Theorem itg2gt0

Description: If the function F is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Hypotheses itg2gt0.1 ( 𝜑𝐴 ∈ dom vol )
itg2gt0.2 ( 𝜑 → 0 < ( vol ‘ 𝐴 ) )
itg2gt0.3 ( 𝜑𝐹 : ℝ ⟶ ( 0 [,) +∞ ) )
itg2gt0.4 ( 𝜑𝐹 ∈ MblFn )
itg2gt0.5 ( ( 𝜑𝑥𝐴 ) → 0 < ( 𝐹𝑥 ) )
Assertion itg2gt0 ( 𝜑 → 0 < ( ∫2𝐹 ) )

Proof

Step Hyp Ref Expression
1 itg2gt0.1 ( 𝜑𝐴 ∈ dom vol )
2 itg2gt0.2 ( 𝜑 → 0 < ( vol ‘ 𝐴 ) )
3 itg2gt0.3 ( 𝜑𝐹 : ℝ ⟶ ( 0 [,) +∞ ) )
4 itg2gt0.4 ( 𝜑𝐹 ∈ MblFn )
5 itg2gt0.5 ( ( 𝜑𝑥𝐴 ) → 0 < ( 𝐹𝑥 ) )
6 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
7 volf vol : dom vol ⟶ ( 0 [,] +∞ )
8 7 ffvelrni ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )
9 6 8 sselid ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ℝ* )
10 1 9 syl ( 𝜑 → ( vol ‘ 𝐴 ) ∈ ℝ* )
11 10 adantr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( vol ‘ 𝐴 ) ∈ ℝ* )
12 4 elexd ( 𝜑𝐹 ∈ V )
13 cnvexg ( 𝐹 ∈ V → 𝐹 ∈ V )
14 12 13 syl ( 𝜑 𝐹 ∈ V )
15 imaexg ( 𝐹 ∈ V → ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V )
16 14 15 syl ( 𝜑 → ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V )
17 16 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V )
18 17 fmpttd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ V )
19 18 ffnd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ )
20 fniunfv ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) )
21 19 20 syl ( 𝜑 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) )
22 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
23 fss ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ )
24 3 22 23 sylancl ( 𝜑𝐹 : ℝ ⟶ ℝ )
25 mbfima ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol )
26 4 24 25 syl2anc ( 𝜑 → ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol )
27 26 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol )
28 27 fmpttd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ dom vol )
29 28 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol )
30 29 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol )
31 iunmbl ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol → 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol )
32 30 31 syl ( 𝜑 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol )
33 21 32 eqeltrrd ( 𝜑 ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol )
34 mblss ( ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol → ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ )
35 33 34 syl ( 𝜑 ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ )
36 ovolcl ( ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ → ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* )
37 35 36 syl ( 𝜑 → ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* )
38 37 adantr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* )
39 0xr 0 ∈ ℝ*
40 39 a1i ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → 0 ∈ ℝ* )
41 mblvol ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) )
42 1 41 syl ( 𝜑 → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) )
43 mblss ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ )
44 1 43 syl ( 𝜑𝐴 ⊆ ℝ )
45 44 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
46 3 ffvelrnda ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) )
47 elrege0 ( ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹𝑥 ) ) )
48 46 47 sylib ( ( 𝜑𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹𝑥 ) ) )
49 48 simpld ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ℝ )
50 45 49 syldan ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ ℝ )
51 nnrecl ( ( ( 𝐹𝑥 ) ∈ ℝ ∧ 0 < ( 𝐹𝑥 ) ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹𝑥 ) )
52 50 5 51 syl2anc ( ( 𝜑𝑥𝐴 ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹𝑥 ) )
53 3 ffnd ( 𝜑𝐹 Fn ℝ )
54 53 ad2antrr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝐹 Fn ℝ )
55 elpreima ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) )
56 54 55 syl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) )
57 45 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ )
58 57 biantrurd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) )
59 nnrecre ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ )
60 59 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ )
61 60 rexrd ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ* )
62 61 adantlr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ* )
63 elioopnf ( ( 1 / 𝑘 ) ∈ ℝ* → ( ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ) ) )
64 62 63 syl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ) ) )
65 56 58 64 3bitr2d ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ) ) )
66 id ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ )
67 imaexg ( 𝐹 ∈ V → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V )
68 14 67 syl ( 𝜑 → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V )
69 68 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V )
70 oveq2 ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) )
71 70 oveq1d ( 𝑛 = 𝑘 → ( ( 1 / 𝑛 ) (,) +∞ ) = ( ( 1 / 𝑘 ) (,) +∞ ) )
72 71 imaeq2d ( 𝑛 = 𝑘 → ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) = ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) )
73 eqid ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) )
74 72 73 fvmptg ( ( 𝑘 ∈ ℕ ∧ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) )
75 66 69 74 syl2anr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) )
76 75 eleq2d ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ↔ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) )
77 50 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹𝑥 ) ∈ ℝ )
78 77 biantrurd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ) ) )
79 65 76 78 3bitr4rd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ↔ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) )
80 79 rexbidva ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) )
81 52 80 mpbid ( ( 𝜑𝑥𝐴 ) → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) )
82 81 ex ( 𝜑 → ( 𝑥𝐴 → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) )
83 eluni2 ( 𝑥 ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ↔ ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥𝑧 )
84 eleq2 ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( 𝑥𝑧𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) )
85 84 rexrn ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥𝑧 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) )
86 19 85 syl ( 𝜑 → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥𝑧 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) )
87 83 86 syl5bb ( 𝜑 → ( 𝑥 ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) )
88 82 87 sylibrd ( 𝜑 → ( 𝑥𝐴𝑥 ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) )
89 88 ssrdv ( 𝜑𝐴 ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) )
90 ovolss ( ( 𝐴 ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∧ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) )
91 89 35 90 syl2anc ( 𝜑 → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) )
92 42 91 eqbrtrd ( 𝜑 → ( vol ‘ 𝐴 ) ≤ ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) )
93 92 adantr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( vol ‘ 𝐴 ) ≤ ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) )
94 mblvol ( ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol → ( vol ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) )
95 33 94 syl ( 𝜑 → ( vol ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) )
96 peano2nn ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ )
97 96 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ )
98 nnrecre ( ( 𝑘 + 1 ) ∈ ℕ → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ )
99 97 98 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ )
100 99 rexrd ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ* )
101 nnre ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ )
102 101 adantl ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ )
103 102 lep1d ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ≤ ( 𝑘 + 1 ) )
104 nngt0 ( 𝑘 ∈ ℕ → 0 < 𝑘 )
105 104 adantl ( ( 𝜑𝑘 ∈ ℕ ) → 0 < 𝑘 )
106 97 nnred ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℝ )
107 97 nngt0d ( ( 𝜑𝑘 ∈ ℕ ) → 0 < ( 𝑘 + 1 ) )
108 lerec ( ( ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) )
109 102 105 106 107 108 syl22anc ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) )
110 103 109 mpbid ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) )
111 iooss1 ( ( ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ* ∧ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) → ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) )
112 100 110 111 syl2anc ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) )
113 imass2 ( ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ⊆ ( 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) )
114 112 113 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ⊆ ( 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) )
115 66 68 74 syl2anr ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) )
116 imaexg ( 𝐹 ∈ V → ( 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V )
117 14 116 syl ( 𝜑 → ( 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V )
118 oveq2 ( 𝑛 = ( 𝑘 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑘 + 1 ) ) )
119 118 oveq1d ( 𝑛 = ( 𝑘 + 1 ) → ( ( 1 / 𝑛 ) (,) +∞ ) = ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) )
120 119 imaeq2d ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) = ( 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) )
121 120 73 fvmptg ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ ( 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) )
122 96 117 121 syl2anr ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) )
123 114 115 122 3sstr4d ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) )
124 123 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) )
125 volsup ( ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) ) → ( vol ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) )
126 28 124 125 syl2anc ( 𝜑 → ( vol ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) )
127 95 126 eqtr3d ( 𝜑 → ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) )
128 127 adantr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) )
129 68 adantr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V )
130 66 129 74 syl2anr ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) )
131 130 fveq2d ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) = ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) )
132 39 a1i ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 ∈ ℝ* )
133 nnrecgt0 ( 𝑘 ∈ ℕ → 0 < ( 1 / 𝑘 ) )
134 133 adantl ( ( 𝜑𝑘 ∈ ℕ ) → 0 < ( 1 / 𝑘 ) )
135 0re 0 ∈ ℝ
136 ltle ( ( 0 ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ ) → ( 0 < ( 1 / 𝑘 ) → 0 ≤ ( 1 / 𝑘 ) ) )
137 135 60 136 sylancr ( ( 𝜑𝑘 ∈ ℕ ) → ( 0 < ( 1 / 𝑘 ) → 0 ≤ ( 1 / 𝑘 ) ) )
138 134 137 mpd ( ( 𝜑𝑘 ∈ ℕ ) → 0 ≤ ( 1 / 𝑘 ) )
139 elxrge0 ( ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 1 / 𝑘 ) ∈ ℝ* ∧ 0 ≤ ( 1 / 𝑘 ) ) )
140 61 138 139 sylanbrc ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) )
141 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
142 ifcl ( ( ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) )
143 140 141 142 sylancl ( ( 𝜑𝑘 ∈ ℕ ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) )
144 143 adantr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) )
145 144 fmpttd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) )
146 145 adantrr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) )
147 itg2cl ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* )
148 146 147 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* )
149 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
150 fss ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
151 3 149 150 sylancl ( 𝜑𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
152 itg2cl ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2𝐹 ) ∈ ℝ* )
153 151 152 syl ( 𝜑 → ( ∫2𝐹 ) ∈ ℝ* )
154 153 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2𝐹 ) ∈ ℝ* )
155 0nrp ¬ 0 ∈ ℝ+
156 simpr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) )
157 115 29 eqeltrrd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol )
158 157 adantrr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol )
159 158 adantr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol )
160 156 135 eqeltrrdi ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ )
161 60 134 elrpd ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ+ )
162 161 adantrr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 1 / 𝑘 ) ∈ ℝ+ )
163 162 adantr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( 1 / 𝑘 ) ∈ ℝ+ )
164 itg2const2 ( ( ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ∧ ( 1 / 𝑘 ) ∈ ℝ+ ) → ( ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ ) )
165 159 163 164 syl2anc ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ ) )
166 160 165 mpbird ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ )
167 elrege0 ( ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 1 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑘 ) ) )
168 60 138 167 sylanbrc ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) )
169 168 adantrr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) )
170 169 adantr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) )
171 itg2const ( ( ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ∧ ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) = ( ( 1 / 𝑘 ) · ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) )
172 159 166 170 171 syl3anc ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) = ( ( 1 / 𝑘 ) · ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) )
173 156 172 eqtrd ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 = ( ( 1 / 𝑘 ) · ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) )
174 simplrr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) )
175 166 174 elrpd ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ+ )
176 163 175 rpmulcld ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ( 1 / 𝑘 ) · ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ∈ ℝ+ )
177 173 176 eqeltrd ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 ∈ ℝ+ )
178 177 ex ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) → 0 ∈ ℝ+ ) )
179 155 178 mtoi ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ¬ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) )
180 itg2ge0 ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) )
181 146 180 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) )
182 xrleloe ( ( 0 ∈ ℝ* ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* ) → ( 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) )
183 39 148 182 sylancr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) )
184 181 183 mpbid ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) )
185 184 ord ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ¬ 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) → 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) )
186 179 185 mt3d ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) )
187 151 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
188 60 adantr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ∈ ℝ )
189 53 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐹 Fn ℝ )
190 189 55 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) )
191 190 biimpa ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) )
192 191 simpld ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 𝑥 ∈ ℝ )
193 49 adantlr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ℝ )
194 192 193 syldan ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝐹𝑥 ) ∈ ℝ )
195 61 adantr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ∈ ℝ* )
196 191 simprd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) )
197 simpr ( ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ) → ( 1 / 𝑘 ) < ( 𝐹𝑥 ) )
198 63 197 syl6bi ( ( 1 / 𝑘 ) ∈ ℝ* → ( ( 𝐹𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) → ( 1 / 𝑘 ) < ( 𝐹𝑥 ) ) )
199 195 196 198 sylc ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) < ( 𝐹𝑥 ) )
200 188 194 199 ltled ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ≤ ( 𝐹𝑥 ) )
201 48 simprd ( ( 𝜑𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹𝑥 ) )
202 201 adantlr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹𝑥 ) )
203 192 202 syldan ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 ≤ ( 𝐹𝑥 ) )
204 breq1 ( ( 1 / 𝑘 ) = if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) → ( ( 1 / 𝑘 ) ≤ ( 𝐹𝑥 ) ↔ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) ) )
205 breq1 ( 0 = if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) → ( 0 ≤ ( 𝐹𝑥 ) ↔ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) ) )
206 204 205 ifboth ( ( ( 1 / 𝑘 ) ≤ ( 𝐹𝑥 ) ∧ 0 ≤ ( 𝐹𝑥 ) ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) )
207 200 203 206 syl2anc ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) )
208 207 adantlr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) )
209 iffalse ( ¬ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) = 0 )
210 209 adantl ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) = 0 )
211 202 adantr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 ≤ ( 𝐹𝑥 ) )
212 210 211 eqbrtrd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) )
213 208 212 pm2.61dan ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) )
214 213 ralrimiva ( ( 𝜑𝑘 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) )
215 214 adantrr ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) )
216 reex ℝ ∈ V
217 216 a1i ( 𝜑 → ℝ ∈ V )
218 ovex ( 1 / 𝑘 ) ∈ V
219 c0ex 0 ∈ V
220 218 219 ifex if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ V
221 220 a1i ( ( 𝜑𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ V )
222 fvexd ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ V )
223 eqidd ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) )
224 3 feqmptd ( 𝜑𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹𝑥 ) ) )
225 217 221 222 223 224 ofrfval2 ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) ) )
226 225 biimpar ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹𝑥 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r𝐹 )
227 215 226 syldan ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r𝐹 )
228 itg2le ( ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r𝐹 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ≤ ( ∫2𝐹 ) )
229 146 187 227 228 syl3anc ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ≤ ( ∫2𝐹 ) )
230 132 148 154 186 229 xrltletrd ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 < ( ∫2𝐹 ) )
231 230 expr ( ( 𝜑𝑘 ∈ ℕ ) → ( 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 < ( ∫2𝐹 ) ) )
232 231 con3d ( ( 𝜑𝑘 ∈ ℕ ) → ( ¬ 0 < ( ∫2𝐹 ) → ¬ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) )
233 7 ffvelrni ( ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol → ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ( 0 [,] +∞ ) )
234 6 233 sselid ( ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol → ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* )
235 157 234 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* )
236 xrlenlt ( ( ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ↔ ¬ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) )
237 235 39 236 sylancl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ↔ ¬ 0 < ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) )
238 232 237 sylibrd ( ( 𝜑𝑘 ∈ ℕ ) → ( ¬ 0 < ( ∫2𝐹 ) → ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ) )
239 238 imp ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 )
240 239 an32s ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 )
241 131 240 eqbrtrd ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 )
242 241 ralrimiva ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 )
243 ffn ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ V → ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ )
244 fveq2 ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( vol ‘ 𝑧 ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) )
245 244 breq1d ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( ( vol ‘ 𝑧 ) ≤ 0 ↔ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) )
246 245 ralrn ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) )
247 18 243 246 3syl ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) )
248 247 adantr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) )
249 242 248 mpbird ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 )
250 ffn ( vol : dom vol ⟶ ( 0 [,] +∞ ) → vol Fn dom vol )
251 7 250 ax-mp vol Fn dom vol
252 28 frnd ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol )
253 252 adantr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol )
254 breq1 ( 𝑥 = ( vol ‘ 𝑧 ) → ( 𝑥 ≤ 0 ↔ ( vol ‘ 𝑧 ) ≤ 0 ) )
255 254 ralima ( ( vol Fn dom vol ∧ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol ) → ( ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ) )
256 251 253 255 sylancr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ) )
257 249 256 mpbird ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 )
258 imassrn ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ran vol
259 frn ( vol : dom vol ⟶ ( 0 [,] +∞ ) → ran vol ⊆ ( 0 [,] +∞ ) )
260 7 259 ax-mp ran vol ⊆ ( 0 [,] +∞ )
261 260 6 sstri ran vol ⊆ ℝ*
262 258 261 sstri ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ℝ*
263 supxrleub ( ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ℝ* ∧ 0 ∈ ℝ* ) → ( sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ) )
264 262 39 263 mp2an ( sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 )
265 257 264 sylibr ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 )
266 128 265 eqbrtrd ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( vol* ‘ ran ( 𝑛 ∈ ℕ ↦ ( 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ≤ 0 )
267 11 38 40 93 266 xrletrd ( ( 𝜑 ∧ ¬ 0 < ( ∫2𝐹 ) ) → ( vol ‘ 𝐴 ) ≤ 0 )
268 267 ex ( 𝜑 → ( ¬ 0 < ( ∫2𝐹 ) → ( vol ‘ 𝐴 ) ≤ 0 ) )
269 xrlenlt ( ( ( vol ‘ 𝐴 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol ‘ 𝐴 ) ≤ 0 ↔ ¬ 0 < ( vol ‘ 𝐴 ) ) )
270 10 39 269 sylancl ( 𝜑 → ( ( vol ‘ 𝐴 ) ≤ 0 ↔ ¬ 0 < ( vol ‘ 𝐴 ) ) )
271 268 270 sylibd ( 𝜑 → ( ¬ 0 < ( ∫2𝐹 ) → ¬ 0 < ( vol ‘ 𝐴 ) ) )
272 2 271 mt4d ( 𝜑 → 0 < ( ∫2𝐹 ) )