| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2i1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 2 |
|
itg2i1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 3 |
|
itg2i1fseq.3 |
⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) |
| 4 |
|
itg2i1fseq.4 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) |
| 5 |
|
itg2i1fseq.5 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 6 |
|
itg2i1fseq.6 |
⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑚 ) ) |
| 8 |
7
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 9 |
8
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 11 |
10
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 12 |
9 11
|
eqtrid |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 13 |
12
|
rneqd |
⊢ ( 𝑥 = 𝑦 → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 14 |
13
|
supeq1d |
⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 15 |
14
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 16 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 ) |
| 17 |
|
i1fmbf |
⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑚 ) ∈ MblFn ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∈ MblFn ) |
| 19 |
|
i1ff |
⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) |
| 20 |
16 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) |
| 21 |
7
|
breq2d |
⊢ ( 𝑛 = 𝑚 → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ↔ 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) ) |
| 22 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑃 ‘ ( 𝑛 + 1 ) ) = ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) |
| 23 |
7 22
|
breq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 24 |
21 23
|
anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ↔ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 25 |
24
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 26 |
4 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 27 |
26
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) |
| 28 |
|
0plef |
⊢ ( ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) ) |
| 29 |
20 27 28
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 30 |
26
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) |
| 31 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 32 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 33 |
31 32
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 34 |
1 2 3 4 5
|
itg2i1fseqle |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∘r ≤ 𝐹 ) |
| 35 |
20
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) Fn ℝ ) |
| 36 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 Fn ℝ ) |
| 38 |
|
reex |
⊢ ℝ ∈ V |
| 39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ V ) |
| 40 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 41 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 42 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 43 |
35 37 39 39 40 41 42
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 44 |
34 43
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 45 |
44
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 46 |
45
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 47 |
46
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 48 |
|
brralrspcev |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 49 |
33 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 50 |
7
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 51 |
50
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 52 |
51
|
rneqi |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 53 |
52
|
supeq1i |
⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) , ℝ* , < ) |
| 54 |
15 18 29 30 49 53
|
itg2mono |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 55 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 |
7
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 57 |
56
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 58 |
57
|
rneqi |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 59 |
58
|
supeq1i |
⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) |
| 60 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 61 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℤ ) |
| 62 |
20
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ ℝ ) |
| 63 |
62
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ ℝ ) |
| 64 |
63 57
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) : ℕ ⟶ ℝ ) |
| 65 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
| 66 |
|
ffvelcdm |
⊢ ( ( 𝑃 : ℕ ⟶ dom ∫1 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 ) |
| 67 |
3 65 66
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 ) |
| 68 |
|
i1ff |
⊢ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 → ( 𝑃 ‘ ( 𝑚 + 1 ) ) : ℝ ⟶ ℝ ) |
| 69 |
67 68
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) : ℝ ⟶ ℝ ) |
| 70 |
69
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) Fn ℝ ) |
| 71 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 72 |
35 70 39 39 40 41 71
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) ) |
| 73 |
30 72
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 74 |
73
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 75 |
74
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 76 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) |
| 77 |
|
fvex |
⊢ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ V |
| 78 |
56 76 77
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 80 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) |
| 81 |
80
|
fveq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 82 |
|
fvex |
⊢ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ∈ V |
| 83 |
81 76 82
|
fvmpt |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 84 |
65 83
|
syl |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 85 |
84
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 86 |
75 79 85
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚 + 1 ) ) ) |
| 87 |
78
|
breq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ 𝑧 ↔ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) ) |
| 88 |
87
|
ralbiia |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ 𝑧 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 89 |
88
|
rexbii |
⊢ ( ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ 𝑧 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 90 |
49 89
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ 𝑧 ) |
| 91 |
60 61 64 86 90
|
climsup |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 92 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) |
| 93 |
92
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 94 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 95 |
93 94
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ) |
| 96 |
95
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 97 |
5 96
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 98 |
|
climuni |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑦 ) ) |
| 99 |
91 97 98
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑦 ) ) |
| 100 |
59 99
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑦 ) ) |
| 101 |
100
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 102 |
55 101
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) ) |
| 103 |
102 15
|
eqtr4di |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 104 |
103
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) ) |
| 105 |
|
itg2itg1 |
⊢ ( ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) → ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 106 |
16 27 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 107 |
106
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) ) |
| 108 |
6 107
|
eqtr4id |
⊢ ( 𝜑 → 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) ) |
| 109 |
108 51
|
eqtr4di |
⊢ ( 𝜑 → 𝑆 = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ) |
| 110 |
109
|
rneqd |
⊢ ( 𝜑 → ran 𝑆 = ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ) |
| 111 |
110
|
supeq1d |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 112 |
54 104 111
|
3eqtr4d |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |