| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2i1fseq.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | itg2i1fseq.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 3 |  | itg2i1fseq.3 | ⊢ ( 𝜑  →  𝑃 : ℕ ⟶ dom  ∫1 ) | 
						
							| 4 |  | itg2i1fseq.4 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 5 |  | itg2i1fseq.5 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 6 |  | itg2i1fseq.6 | ⊢ 𝑆  =  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ 𝑚 ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 9 | 8 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 11 | 10 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 12 | 9 11 | eqtrid | ⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 13 | 12 | rneqd | ⊢ ( 𝑥  =  𝑦  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 14 | 13 | supeq1d | ⊢ ( 𝑥  =  𝑦  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 15 | 14 | cbvmptv | ⊢ ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑦  ∈  ℝ  ↦  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 16 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1 ) | 
						
							| 17 |  | i1fmbf | ⊢ ( ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1  →  ( 𝑃 ‘ 𝑚 )  ∈  MblFn ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  ∈  MblFn ) | 
						
							| 19 |  | i1ff | ⊢ ( ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1  →  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | 
						
							| 20 | 16 19 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | 
						
							| 21 | 7 | breq2d | ⊢ ( 𝑛  =  𝑚  →  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ↔  0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 22 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑃 ‘ ( 𝑛  +  1 ) )  =  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 23 | 7 22 | breq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 24 | 21 23 | anbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) )  ↔  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 )  ∧  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 25 | 24 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 )  ∧  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 26 | 4 25 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 )  ∧  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 ) ) | 
						
							| 28 |  | 0plef | ⊢ ( ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ  ∧  0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 29 | 20 27 28 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 30 | 26 | simprd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 31 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 32 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 33 | 31 32 | sselid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 34 | 1 2 3 4 5 | itg2i1fseqle | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  ∘r   ≤  𝐹 ) | 
						
							| 35 | 20 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  Fn  ℝ ) | 
						
							| 36 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℝ ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐹  Fn  ℝ ) | 
						
							| 38 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 40 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 41 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 42 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 43 | 35 37 39 39 40 41 42 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 )  ∘r   ≤  𝐹  ↔  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 44 | 34 43 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 45 | 44 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 46 | 45 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 47 | 46 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ∀ 𝑚  ∈  ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 48 |  | brralrspcev | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  ∀ 𝑚  ∈  ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  𝑧 ) | 
						
							| 49 | 33 47 48 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  𝑧 ) | 
						
							| 50 | 7 | fveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) )  =  ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 51 | 50 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 52 | 51 | rneqi | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) )  =  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 53 | 52 | supeq1i | ⊢ sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 54 | 15 18 29 30 49 53 | itg2mono | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 55 | 2 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 56 | 7 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 57 | 56 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 58 | 57 | rneqi | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ran  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 59 | 58 | supeq1i | ⊢ sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) | 
						
							| 60 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 61 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  1  ∈  ℤ ) | 
						
							| 62 | 20 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 63 | 62 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 64 | 63 57 | fmptd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) : ℕ ⟶ ℝ ) | 
						
							| 65 |  | peano2nn | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 66 |  | ffvelcdm | ⊢ ( ( 𝑃 : ℕ ⟶ dom  ∫1  ∧  ( 𝑚  +  1 )  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 67 | 3 65 66 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 68 |  | i1ff | ⊢ ( ( 𝑃 ‘ ( 𝑚  +  1 ) )  ∈  dom  ∫1  →  ( 𝑃 ‘ ( 𝑚  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 70 | 69 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑚  +  1 ) )  Fn  ℝ ) | 
						
							| 71 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 72 | 35 70 39 39 40 41 71 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑚  +  1 ) )  ↔  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) ) | 
						
							| 73 | 30 72 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 74 | 73 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 75 | 74 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 76 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 77 |  | fvex | ⊢ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ∈  V | 
						
							| 78 | 56 76 77 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  =  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 80 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 81 | 80 | fveq1d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 82 |  | fvex | ⊢ ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 )  ∈  V | 
						
							| 83 | 81 76 82 | fvmpt | ⊢ ( ( 𝑚  +  1 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚  +  1 ) )  =  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 84 | 65 83 | syl | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚  +  1 ) )  =  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚  +  1 ) )  =  ( ( 𝑃 ‘ ( 𝑚  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 86 | 75 79 85 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 87 | 78 | breq1d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ≤  𝑧  ↔  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  𝑧 ) ) | 
						
							| 88 | 87 | ralbiia | ⊢ ( ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ≤  𝑧  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  𝑧 ) | 
						
							| 89 | 88 | rexbii | ⊢ ( ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ≤  𝑧  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 )  ≤  𝑧 ) | 
						
							| 90 | 49 89 | sylibr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 )  ≤  𝑧 ) | 
						
							| 91 | 60 61 64 86 90 | climsup | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 92 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 93 | 92 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ) | 
						
							| 94 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 95 | 93 94 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 96 | 95 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 97 | 5 96 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 98 |  | climuni | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 99 | 91 97 98 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 100 | 59 99 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 101 | 100 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) )  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 102 | 55 101 | eqtr4d | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ℝ  ↦  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 103 | 102 15 | eqtr4di | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 104 | 103 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) ) | 
						
							| 105 |  | itg2itg1 | ⊢ ( ( ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑚 ) )  →  ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) )  =  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 106 | 16 27 105 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) )  =  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 107 | 106 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) ) | 
						
							| 108 | 6 107 | eqtr4id | ⊢ ( 𝜑  →  𝑆  =  ( 𝑚  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) ) | 
						
							| 109 | 108 51 | eqtr4di | ⊢ ( 𝜑  →  𝑆  =  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ) | 
						
							| 110 | 109 | rneqd | ⊢ ( 𝜑  →  ran  𝑆  =  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ) | 
						
							| 111 | 110 | supeq1d | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 112 | 54 104 111 | 3eqtr4d | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) |