| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2i1fseq.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | itg2i1fseq.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 3 |  | itg2i1fseq.3 | ⊢ ( 𝜑  →  𝑃 : ℕ ⟶ dom  ∫1 ) | 
						
							| 4 |  | itg2i1fseq.4 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 5 |  | itg2i1fseq.5 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 6 |  | itg2i1fseq.6 | ⊢ 𝑆  =  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 7 |  | itg2i1fseq2.7 | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 8 |  | itg2i1fseq2.8 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) )  ≤  𝑀 ) | 
						
							| 9 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 10 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 11 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1 ) | 
						
							| 12 |  | itg1cl | ⊢ ( ( 𝑃 ‘ 𝑚 )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 14 | 13 6 | fmptd | ⊢ ( 𝜑  →  𝑆 : ℕ ⟶ ℝ ) | 
						
							| 15 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  ∈  dom  ∫1 ) | 
						
							| 16 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 17 |  | ffvelcdm | ⊢ ( ( 𝑃 : ℕ ⟶ dom  ∫1  ∧  ( 𝑘  +  1 )  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 18 | 3 16 17 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) )  →  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 20 | 19 | ralimi | ⊢ ( ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 21 | 4 20 | syl | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 23 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑃 ‘ ( 𝑛  +  1 ) )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 24 | 22 23 | breq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 25 | 24 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 26 | 21 25 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 27 |  | itg1le | ⊢ ( ( ( 𝑃 ‘ 𝑘 )  ∈  dom  ∫1  ∧  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ∈  dom  ∫1  ∧  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑘  +  1 ) ) )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) )  ≤  ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 28 | 15 18 26 27 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) )  ≤  ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 29 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑘  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  =  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 30 |  | fvex | ⊢ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) )  ∈  V | 
						
							| 31 | 29 6 30 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  =  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  =  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 33 |  | 2fveq3 | ⊢ ( 𝑚  =  ( 𝑘  +  1 )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) )  =  ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 34 |  | fvex | ⊢ ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘  +  1 ) ) )  ∈  V | 
						
							| 35 | 33 6 34 | fvmpt | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ  →  ( 𝑆 ‘ ( 𝑘  +  1 ) )  =  ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 36 | 16 35 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ ( 𝑘  +  1 ) )  =  ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ ( 𝑘  +  1 ) )  =  ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 38 | 28 32 37 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  ≤  ( 𝑆 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 39 | 32 8 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  ≤  𝑀 ) | 
						
							| 40 | 39 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑀 ) | 
						
							| 41 |  | brralrspcev | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑀 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑧 ) | 
						
							| 42 | 7 40 41 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑧 ) | 
						
							| 43 | 9 10 14 38 42 | climsup | ⊢ ( 𝜑  →  𝑆  ⇝  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 44 | 1 2 3 4 5 6 | itg2i1fseq | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 45 | 14 | frnd | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ℝ ) | 
						
							| 46 | 6 13 | dmmptd | ⊢ ( 𝜑  →  dom  𝑆  =  ℕ ) | 
						
							| 47 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 48 |  | ne0i | ⊢ ( 1  ∈  ℕ  →  ℕ  ≠  ∅ ) | 
						
							| 49 | 47 48 | mp1i | ⊢ ( 𝜑  →  ℕ  ≠  ∅ ) | 
						
							| 50 | 46 49 | eqnetrd | ⊢ ( 𝜑  →  dom  𝑆  ≠  ∅ ) | 
						
							| 51 |  | dm0rn0 | ⊢ ( dom  𝑆  =  ∅  ↔  ran  𝑆  =  ∅ ) | 
						
							| 52 | 51 | necon3bii | ⊢ ( dom  𝑆  ≠  ∅  ↔  ran  𝑆  ≠  ∅ ) | 
						
							| 53 | 50 52 | sylib | ⊢ ( 𝜑  →  ran  𝑆  ≠  ∅ ) | 
						
							| 54 |  | ffn | ⊢ ( 𝑆 : ℕ ⟶ ℝ  →  𝑆  Fn  ℕ ) | 
						
							| 55 |  | breq1 | ⊢ ( 𝑦  =  ( 𝑆 ‘ 𝑘 )  →  ( 𝑦  ≤  𝑧  ↔  ( 𝑆 ‘ 𝑘 )  ≤  𝑧 ) ) | 
						
							| 56 | 55 | ralrn | ⊢ ( 𝑆  Fn  ℕ  →  ( ∀ 𝑦  ∈  ran  𝑆 𝑦  ≤  𝑧  ↔  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑧 ) ) | 
						
							| 57 | 14 54 56 | 3syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ran  𝑆 𝑦  ≤  𝑧  ↔  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑧 ) ) | 
						
							| 58 | 57 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑦  ∈  ran  𝑆 𝑦  ≤  𝑧  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑧 ) ) | 
						
							| 59 | 42 58 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℝ ∀ 𝑦  ∈  ran  𝑆 𝑦  ≤  𝑧 ) | 
						
							| 60 |  | supxrre | ⊢ ( ( ran  𝑆  ⊆  ℝ  ∧  ran  𝑆  ≠  ∅  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑦  ∈  ran  𝑆 𝑦  ≤  𝑧 )  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  =  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 61 | 45 53 59 60 | syl3anc | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  =  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 62 | 44 61 | eqtrd | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  =  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 63 | 43 62 | breqtrrd | ⊢ ( 𝜑  →  𝑆  ⇝  ( ∫2 ‘ 𝐹 ) ) |