Step |
Hyp |
Ref |
Expression |
1 |
|
itg2i1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
itg2i1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
itg2i1fseq.3 |
⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) |
4 |
|
itg2i1fseq.4 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) |
5 |
|
itg2i1fseq.5 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
6 |
|
itg2i1fseq.6 |
⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
7 |
|
itg2i1fseq2.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
8 |
|
itg2i1fseq2.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ 𝑀 ) |
9 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
10 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
11 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 ) |
12 |
|
itg1cl |
⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ∈ ℝ ) |
13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ∈ ℝ ) |
14 |
13 6
|
fmptd |
⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ℝ ) |
15 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 ) |
16 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
17 |
|
ffvelrn |
⊢ ( ( 𝑃 : ℕ ⟶ dom ∫1 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ) |
18 |
3 16 17
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ) |
19 |
|
simpr |
⊢ ( ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
20 |
19
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
21 |
4 20
|
syl |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑘 ) ) |
23 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ ( 𝑛 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
24 |
22 23
|
breq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
25 |
24
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
26 |
21 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
27 |
|
itg1le |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ∧ ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
28 |
15 18 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
29 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑘 → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) |
30 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ∈ V |
31 |
29 6 30
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) |
33 |
|
2fveq3 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
34 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ∈ V |
35 |
33 6 34
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
36 |
16 35
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
38 |
28 32 37
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ≤ ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) |
39 |
32 8
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ≤ 𝑀 ) |
40 |
39
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑀 ) |
41 |
|
brralrspcev |
⊢ ( ( 𝑀 ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑀 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) |
42 |
7 40 41
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) |
43 |
9 10 14 38 42
|
climsup |
⊢ ( 𝜑 → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
44 |
1 2 3 4 5 6
|
itg2i1fseq |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |
45 |
14
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
46 |
6 13
|
dmmptd |
⊢ ( 𝜑 → dom 𝑆 = ℕ ) |
47 |
|
1nn |
⊢ 1 ∈ ℕ |
48 |
|
ne0i |
⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) |
49 |
47 48
|
mp1i |
⊢ ( 𝜑 → ℕ ≠ ∅ ) |
50 |
46 49
|
eqnetrd |
⊢ ( 𝜑 → dom 𝑆 ≠ ∅ ) |
51 |
|
dm0rn0 |
⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) |
52 |
51
|
necon3bii |
⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
53 |
50 52
|
sylib |
⊢ ( 𝜑 → ran 𝑆 ≠ ∅ ) |
54 |
|
ffn |
⊢ ( 𝑆 : ℕ ⟶ ℝ → 𝑆 Fn ℕ ) |
55 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑆 ‘ 𝑘 ) → ( 𝑦 ≤ 𝑧 ↔ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) ) |
56 |
55
|
ralrn |
⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) ) |
57 |
14 54 56
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) ) |
58 |
57
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) ) |
59 |
42 58
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ) |
60 |
|
supxrre |
⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
61 |
45 53 59 60
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
62 |
44 61
|
eqtrd |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = sup ( ran 𝑆 , ℝ , < ) ) |
63 |
43 62
|
breqtrrd |
⊢ ( 𝜑 → 𝑆 ⇝ ( ∫2 ‘ 𝐹 ) ) |