Step |
Hyp |
Ref |
Expression |
1 |
|
itg2i1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
itg2i1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
itg2i1fseq.3 |
⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) |
4 |
|
itg2i1fseq.4 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) |
5 |
|
itg2i1fseq.5 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
6 |
|
itg2i1fseq.6 |
⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
7 |
|
itg2i1fseq3.7 |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
8 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
9 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
10 |
2 8 9
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
12 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 ) |
13 |
1 2 3 4 5
|
itg2i1fseqle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ 𝐹 ) |
14 |
|
itg2ub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 ∧ ( 𝑃 ‘ 𝑘 ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
16 |
1 2 3 4 5 6 7 15
|
itg2i1fseq2 |
⊢ ( 𝜑 → 𝑆 ⇝ ( ∫2 ‘ 𝐹 ) ) |