| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2i1fseq.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | itg2i1fseq.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 3 |  | itg2i1fseq.3 | ⊢ ( 𝜑  →  𝑃 : ℕ ⟶ dom  ∫1 ) | 
						
							| 4 |  | itg2i1fseq.4 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 5 |  | itg2i1fseq.5 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 6 |  | itg2i1fseq.6 | ⊢ 𝑆  =  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | 
						
							| 7 |  | itg2i1fseq3.7 | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 8 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 9 |  | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 10 | 2 8 9 | sylancl | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 12 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  ∈  dom  ∫1 ) | 
						
							| 13 | 1 2 3 4 5 | itg2i1fseqle | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  𝐹 ) | 
						
							| 14 |  | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑃 ‘ 𝑘 )  ∈  dom  ∫1  ∧  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 15 | 11 12 13 14 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 15 | itg2i1fseq2 | ⊢ ( 𝜑  →  𝑆  ⇝  ( ∫2 ‘ 𝐹 ) ) |