| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2i1fseq.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | itg2i1fseq.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 3 |  | itg2i1fseq.3 | ⊢ ( 𝜑  →  𝑃 : ℕ ⟶ dom  ∫1 ) | 
						
							| 4 |  | itg2i1fseq.4 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 5 |  | itg2i1fseq.5 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 9 |  | fvex | ⊢ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 )  ∈  V | 
						
							| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 )  =  ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 )  =  ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) | 
						
							| 12 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  𝑀  ∈  ℕ ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 15 | 14 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 17 | 15 16 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 18 | 17 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ℝ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 19 | 5 18 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 20 | 19 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) )  ⇝  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 22 | 21 | fveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) | 
						
							| 23 |  | fvex | ⊢ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 )  ∈  V | 
						
							| 24 | 22 8 23 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 )  =  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 )  =  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) | 
						
							| 26 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  ∈  dom  ∫1 ) | 
						
							| 27 |  | i1ff | ⊢ ( ( 𝑃 ‘ 𝑘 )  ∈  dom  ∫1  →  ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ ) | 
						
							| 29 | 28 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 30 | 29 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 31 | 25 30 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 32 | 31 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 33 |  | simpr | ⊢ ( ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) )  →  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 34 | 33 | ralimi | ⊢ ( ∀ 𝑛  ∈  ℕ ( 0𝑝  ∘r   ≤  ( 𝑃 ‘ 𝑛 )  ∧  ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 35 | 4 34 | syl | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 36 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑃 ‘ ( 𝑛  +  1 ) )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 37 | 21 36 | breq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 38 | 37 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝑃 ‘ 𝑛 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑛  +  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 39 | 35 38 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 40 |  | ffn | ⊢ ( ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ  →  ( 𝑃 ‘ 𝑘 )  Fn  ℝ ) | 
						
							| 41 | 26 27 40 | 3syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑘 )  Fn  ℝ ) | 
						
							| 42 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 43 |  | ffvelcdm | ⊢ ( ( 𝑃 : ℕ ⟶ dom  ∫1  ∧  ( 𝑘  +  1 )  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 44 | 3 42 43 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ∈  dom  ∫1 ) | 
						
							| 45 |  | i1ff | ⊢ ( ( 𝑃 ‘ ( 𝑘  +  1 ) )  ∈  dom  ∫1  →  ( 𝑃 ‘ ( 𝑘  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 46 |  | ffn | ⊢ ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) : ℝ ⟶ ℝ  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  Fn  ℝ ) | 
						
							| 47 | 44 45 46 | 3syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  Fn  ℝ ) | 
						
							| 48 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 49 | 48 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 50 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 51 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) | 
						
							| 52 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 53 | 41 47 49 49 50 51 52 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑘 )  ∘r   ≤  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) ) | 
						
							| 54 | 39 53 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 55 | 54 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 56 | 55 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 )  ≤  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 57 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 58 | 57 | fveq1d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 59 |  | fvex | ⊢ ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 )  ∈  V | 
						
							| 60 | 58 8 59 | fvmpt | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 61 | 42 60 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑃 ‘ ( 𝑘  +  1 ) ) ‘ 𝑦 ) ) | 
						
							| 63 | 56 25 62 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 64 | 63 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 65 | 12 13 20 32 64 | climub | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 66 | 11 65 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 68 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( 𝑃 ‘ 𝑀 )  ∈  dom  ∫1 ) | 
						
							| 69 |  | i1ff | ⊢ ( ( 𝑃 ‘ 𝑀 )  ∈  dom  ∫1  →  ( 𝑃 ‘ 𝑀 ) : ℝ ⟶ ℝ ) | 
						
							| 70 |  | ffn | ⊢ ( ( 𝑃 ‘ 𝑀 ) : ℝ ⟶ ℝ  →  ( 𝑃 ‘ 𝑀 )  Fn  ℝ ) | 
						
							| 71 | 68 69 70 | 3syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( 𝑃 ‘ 𝑀 )  Fn  ℝ ) | 
						
							| 72 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℝ ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  𝐹  Fn  ℝ ) | 
						
							| 74 | 48 | a1i | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 75 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) | 
						
							| 76 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 77 | 71 73 74 74 50 75 76 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑀 )  ∘r   ≤  𝐹  ↔  ∀ 𝑦  ∈  ℝ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 78 | 67 77 | mpbird | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( 𝑃 ‘ 𝑀 )  ∘r   ≤  𝐹 ) |