Step |
Hyp |
Ref |
Expression |
1 |
|
itg2i1fseq.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
itg2i1fseq.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
3 |
|
itg2i1fseq.3 |
⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) |
4 |
|
itg2i1fseq.4 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) |
5 |
|
itg2i1fseq.5 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑀 ) ) |
7 |
6
|
fveq1d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) |
8 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) |
9 |
|
fvex |
⊢ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 ) = ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 ) = ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) |
12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
13 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑀 ∈ ℕ ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
17 |
15 16
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ) |
18 |
17
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
19 |
5 18
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
20 |
19
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑘 ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) |
23 |
|
fvex |
⊢ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ∈ V |
24 |
22 8 23
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) |
26 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 ) |
27 |
|
i1ff |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ ) |
28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ ) |
29 |
28
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ∈ ℝ ) |
30 |
29
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ∈ ℝ ) |
31 |
25 30
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ∈ ℝ ) |
32 |
31
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ∈ ℝ ) |
33 |
|
simpr |
⊢ ( ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
34 |
33
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
35 |
4 34
|
syl |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
36 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ ( 𝑛 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
37 |
21 36
|
breq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
38 |
37
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
39 |
35 38
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
40 |
|
ffn |
⊢ ( ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ → ( 𝑃 ‘ 𝑘 ) Fn ℝ ) |
41 |
26 27 40
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) Fn ℝ ) |
42 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
43 |
|
ffvelrn |
⊢ ( ( 𝑃 : ℕ ⟶ dom ∫1 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ) |
44 |
3 42 43
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ) |
45 |
|
i1ff |
⊢ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) : ℝ ⟶ ℝ ) |
46 |
|
ffn |
⊢ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) : ℝ ⟶ ℝ → ( 𝑃 ‘ ( 𝑘 + 1 ) ) Fn ℝ ) |
47 |
44 45 46
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) Fn ℝ ) |
48 |
|
reex |
⊢ ℝ ∈ V |
49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ℝ ∈ V ) |
50 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
51 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) |
52 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
53 |
41 47 49 49 50 51 52
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) ) |
54 |
39 53
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
55 |
54
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
56 |
55
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
57 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
58 |
57
|
fveq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
59 |
|
fvex |
⊢ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ∈ V |
60 |
58 8 59
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
61 |
42 60
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
62 |
61
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
63 |
56 25 62
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) ) |
64 |
63
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) ) |
65 |
12 13 20 32 64
|
climub |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
66 |
11 65
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
67 |
66
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
68 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ‘ 𝑀 ) ∈ dom ∫1 ) |
69 |
|
i1ff |
⊢ ( ( 𝑃 ‘ 𝑀 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑀 ) : ℝ ⟶ ℝ ) |
70 |
|
ffn |
⊢ ( ( 𝑃 ‘ 𝑀 ) : ℝ ⟶ ℝ → ( 𝑃 ‘ 𝑀 ) Fn ℝ ) |
71 |
68 69 70
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ‘ 𝑀 ) Fn ℝ ) |
72 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → 𝐹 Fn ℝ ) |
74 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ℝ ∈ V ) |
75 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) |
76 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
77 |
71 73 74 74 50 75 76
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑀 ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
78 |
67 77
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ‘ 𝑀 ) ∘r ≤ 𝐹 ) |