Metamath Proof Explorer


Theorem itg2itg1

Description: The integral of a nonnegative simple function using S.2 is the same as its value under S.1 . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2itg1 ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ( ∫2𝐹 ) = ( ∫1𝐹 ) )

Proof

Step Hyp Ref Expression
1 i1ff ( 𝐹 ∈ dom ∫1𝐹 : ℝ ⟶ ℝ )
2 xrge0f ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝r𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
3 1 2 sylan ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
4 itg2cl ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2𝐹 ) ∈ ℝ* )
5 3 4 syl ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ( ∫2𝐹 ) ∈ ℝ* )
6 itg1cl ( 𝐹 ∈ dom ∫1 → ( ∫1𝐹 ) ∈ ℝ )
7 6 adantr ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ( ∫1𝐹 ) ∈ ℝ )
8 7 rexrd ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ( ∫1𝐹 ) ∈ ℝ* )
9 itg1le ( ( 𝑔 ∈ dom ∫1𝐹 ∈ dom ∫1𝑔r𝐹 ) → ( ∫1𝑔 ) ≤ ( ∫1𝐹 ) )
10 9 3expia ( ( 𝑔 ∈ dom ∫1𝐹 ∈ dom ∫1 ) → ( 𝑔r𝐹 → ( ∫1𝑔 ) ≤ ( ∫1𝐹 ) ) )
11 10 ancoms ( ( 𝐹 ∈ dom ∫1𝑔 ∈ dom ∫1 ) → ( 𝑔r𝐹 → ( ∫1𝑔 ) ≤ ( ∫1𝐹 ) ) )
12 11 ralrimiva ( 𝐹 ∈ dom ∫1 → ∀ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹 → ( ∫1𝑔 ) ≤ ( ∫1𝐹 ) ) )
13 12 adantr ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ∀ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹 → ( ∫1𝑔 ) ≤ ( ∫1𝐹 ) ) )
14 itg2leub ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫1𝐹 ) ∈ ℝ* ) → ( ( ∫2𝐹 ) ≤ ( ∫1𝐹 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹 → ( ∫1𝑔 ) ≤ ( ∫1𝐹 ) ) ) )
15 3 8 14 syl2anc ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ( ( ∫2𝐹 ) ≤ ( ∫1𝐹 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹 → ( ∫1𝑔 ) ≤ ( ∫1𝐹 ) ) ) )
16 13 15 mpbird ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ( ∫2𝐹 ) ≤ ( ∫1𝐹 ) )
17 simpl ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → 𝐹 ∈ dom ∫1 )
18 reex ℝ ∈ V
19 18 a1i ( 𝐹 ∈ dom ∫1 → ℝ ∈ V )
20 leid ( 𝑥 ∈ ℝ → 𝑥𝑥 )
21 20 adantl ( ( 𝐹 ∈ dom ∫1𝑥 ∈ ℝ ) → 𝑥𝑥 )
22 19 1 21 caofref ( 𝐹 ∈ dom ∫1𝐹r𝐹 )
23 22 adantr ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → 𝐹r𝐹 )
24 itg2ub ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∈ dom ∫1𝐹r𝐹 ) → ( ∫1𝐹 ) ≤ ( ∫2𝐹 ) )
25 3 17 23 24 syl3anc ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ( ∫1𝐹 ) ≤ ( ∫2𝐹 ) )
26 5 8 16 25 xrletrid ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹 ) → ( ∫2𝐹 ) = ( ∫1𝐹 ) )