Step |
Hyp |
Ref |
Expression |
1 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
xrge0f |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
4 |
|
itg2cl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
6 |
|
itg1cl |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) |
8 |
7
|
rexrd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) ∈ ℝ* ) |
9 |
|
itg1le |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) |
10 |
9
|
3expia |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ) → ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) |
12 |
11
|
ralrimiva |
⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) |
14 |
|
itg2leub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫1 ‘ 𝐹 ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐹 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) ) |
15 |
3 8 14
|
syl2anc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐹 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐹 ) ) |
17 |
|
simpl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 ∈ dom ∫1 ) |
18 |
|
reex |
⊢ ℝ ∈ V |
19 |
18
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
20 |
|
leid |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ 𝑥 ) |
21 |
20
|
adantl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ 𝑥 ) |
22 |
19 1 21
|
caofref |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∘r ≤ 𝐹 ) |
23 |
22
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 ∘r ≤ 𝐹 ) |
24 |
|
itg2ub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
25 |
3 17 23 24
|
syl3anc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
26 |
5 8 16 25
|
xrletrid |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) = ( ∫1 ‘ 𝐹 ) ) |