| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | xrge0f | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  0𝑝  ∘r   ≤  𝐹 )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 |  | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 6 |  | itg1cl | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ∫1 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 8 | 7 | rexrd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 9 |  | itg1le | ⊢ ( ( 𝑔  ∈  dom  ∫1  ∧  𝐹  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝑔 )  ≤  ( ∫1 ‘ 𝐹 ) ) | 
						
							| 10 | 9 | 3expia | ⊢ ( ( 𝑔  ∈  dom  ∫1  ∧  𝐹  ∈  dom  ∫1 )  →  ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  ( ∫1 ‘ 𝐹 ) ) ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑔  ∈  dom  ∫1 )  →  ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  ( ∫1 ‘ 𝐹 ) ) ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( 𝐹  ∈  dom  ∫1  →  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  ( ∫1 ‘ 𝐹 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  ( ∫1 ‘ 𝐹 ) ) ) | 
						
							| 14 |  | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ∫1 ‘ 𝐹 )  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐹 )  ≤  ( ∫1 ‘ 𝐹 )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  ( ∫1 ‘ 𝐹 ) ) ) ) | 
						
							| 15 | 3 8 14 | syl2anc | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ( ∫2 ‘ 𝐹 )  ≤  ( ∫1 ‘ 𝐹 )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  ( ∫1 ‘ 𝐹 ) ) ) ) | 
						
							| 16 | 13 15 | mpbird | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ∫2 ‘ 𝐹 )  ≤  ( ∫1 ‘ 𝐹 ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 18 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝐹  ∈  dom  ∫1  →  ℝ  ∈  V ) | 
						
							| 20 |  | leid | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ≤  𝑥 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  𝑥  ≤  𝑥 ) | 
						
							| 22 | 19 1 21 | caofref | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹  ∘r   ≤  𝐹 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  𝐹  ∘r   ≤  𝐹 ) | 
						
							| 24 |  | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐹  ∈  dom  ∫1  ∧  𝐹  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 25 | 3 17 23 24 | syl3anc | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 26 | 5 8 16 25 | xrletrid | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ( ∫2 ‘ 𝐹 )  =  ( ∫1 ‘ 𝐹 ) ) |