| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2val.1 | ⊢ 𝐿  =  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝐴  ∈  𝐿  ↔  𝐴  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝐴  =  ( ∫1 ‘ 𝑔 ) )  →  𝐴  =  ( ∫1 ‘ 𝑔 ) ) | 
						
							| 4 |  | fvex | ⊢ ( ∫1 ‘ 𝑔 )  ∈  V | 
						
							| 5 | 3 4 | eqeltrdi | ⊢ ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝐴  =  ( ∫1 ‘ 𝑔 ) )  →  𝐴  ∈  V ) | 
						
							| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝐴  =  ( ∫1 ‘ 𝑔 ) )  →  𝐴  ∈  V ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  ( ∫1 ‘ 𝑔 )  ↔  𝐴  =  ( ∫1 ‘ 𝑔 ) ) ) | 
						
							| 8 | 7 | anbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  ↔  ( 𝑔  ∘r   ≤  𝐹  ∧  𝐴  =  ( ∫1 ‘ 𝑔 ) ) ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  ↔  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝐴  =  ( ∫1 ‘ 𝑔 ) ) ) ) | 
						
							| 10 | 6 9 | elab3 | ⊢ ( 𝐴  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  ↔  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝐴  =  ( ∫1 ‘ 𝑔 ) ) ) | 
						
							| 11 | 2 10 | bitri | ⊢ ( 𝐴  ∈  𝐿  ↔  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝐴  =  ( ∫1 ‘ 𝑔 ) ) ) |