Step |
Hyp |
Ref |
Expression |
1 |
|
itg2val.1 |
⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
2 |
|
itg1cl |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) |
3 |
2
|
rexrd |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ* ) |
4 |
|
simpr |
⊢ ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 = ( ∫1 ‘ 𝑔 ) ) |
5 |
4
|
eleq1d |
⊢ ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → ( 𝑥 ∈ ℝ* ↔ ( ∫1 ‘ 𝑔 ) ∈ ℝ* ) ) |
6 |
3 5
|
syl5ibrcom |
⊢ ( 𝑔 ∈ dom ∫1 → ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 ∈ ℝ* ) ) |
7 |
6
|
rexlimiv |
⊢ ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 ∈ ℝ* ) |
8 |
7
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* |
9 |
1 8
|
eqsstri |
⊢ 𝐿 ⊆ ℝ* |