| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2val.1 | ⊢ 𝐿  =  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } | 
						
							| 2 |  | itg1cl | ⊢ ( 𝑔  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑔 )  ∈  ℝ ) | 
						
							| 3 | 2 | rexrd | ⊢ ( 𝑔  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑔 )  ∈  ℝ* ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  →  𝑥  =  ( ∫1 ‘ 𝑔 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  →  ( 𝑥  ∈  ℝ*  ↔  ( ∫1 ‘ 𝑔 )  ∈  ℝ* ) ) | 
						
							| 6 | 3 5 | syl5ibrcom | ⊢ ( 𝑔  ∈  dom  ∫1  →  ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  →  𝑥  ∈  ℝ* ) ) | 
						
							| 7 | 6 | rexlimiv | ⊢ ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 8 | 7 | abssi | ⊢ { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  ⊆  ℝ* | 
						
							| 9 | 1 8 | eqsstri | ⊢ 𝐿  ⊆  ℝ* |