| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 2 | 1 | a1i | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  ℝ  ∈  V ) | 
						
							| 3 |  | i1ff | ⊢ ( ℎ  ∈  dom  ∫1  →  ℎ : ℝ ⟶ ℝ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  ℎ : ℝ ⟶ ℝ ) | 
						
							| 5 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 6 |  | fss | ⊢ ( ( ℎ : ℝ ⟶ ℝ  ∧  ℝ  ⊆  ℝ* )  →  ℎ : ℝ ⟶ ℝ* ) | 
						
							| 7 | 4 5 6 | sylancl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  ℎ : ℝ ⟶ ℝ* ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 9 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 10 |  | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  →  𝐹 : ℝ ⟶ ℝ* ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  𝐹 : ℝ ⟶ ℝ* ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 13 |  | fss | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  →  𝐺 : ℝ ⟶ ℝ* ) | 
						
							| 14 | 12 9 13 | sylancl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  𝐺 : ℝ ⟶ ℝ* ) | 
						
							| 15 |  | xrletr | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ*  ∧  𝑧  ∈  ℝ* )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  ∧  ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ*  ∧  𝑧  ∈  ℝ* ) )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 17 | 2 7 11 14 16 | caoftrn | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  ( ( ℎ  ∘r   ≤  𝐹  ∧  𝐹  ∘r   ≤  𝐺 )  →  ℎ  ∘r   ≤  𝐺 ) ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ( ℎ  ∈  dom  ∫1  ∧  ℎ  ∘r   ≤  𝐺 ) )  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 19 |  | simprl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ( ℎ  ∈  dom  ∫1  ∧  ℎ  ∘r   ≤  𝐺 ) )  →  ℎ  ∈  dom  ∫1 ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ( ℎ  ∈  dom  ∫1  ∧  ℎ  ∘r   ≤  𝐺 ) )  →  ℎ  ∘r   ≤  𝐺 ) | 
						
							| 21 |  | itg2ub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ℎ  ∈  dom  ∫1  ∧  ℎ  ∘r   ≤  𝐺 )  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 22 | 18 19 20 21 | syl3anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ( ℎ  ∈  dom  ∫1  ∧  ℎ  ∘r   ≤  𝐺 ) )  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 23 | 22 | expr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  ( ℎ  ∘r   ≤  𝐺  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 24 | 17 23 | syld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  ( ( ℎ  ∘r   ≤  𝐹  ∧  𝐹  ∘r   ≤  𝐺 )  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 25 | 24 | ancomsd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  ∧  ℎ  ∈  dom  ∫1 )  →  ( ( 𝐹  ∘r   ≤  𝐺  ∧  ℎ  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 26 | 25 | exp4b | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  →  ( ℎ  ∈  dom  ∫1  →  ( 𝐹  ∘r   ≤  𝐺  →  ( ℎ  ∘r   ≤  𝐹  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) ) ) | 
						
							| 27 | 26 | com23 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )  →  ( 𝐹  ∘r   ≤  𝐺  →  ( ℎ  ∈  dom  ∫1  →  ( ℎ  ∘r   ≤  𝐹  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) ) ) | 
						
							| 28 | 27 | 3impia | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐹  ∘r   ≤  𝐺 )  →  ( ℎ  ∈  dom  ∫1  →  ( ℎ  ∘r   ≤  𝐹  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 29 | 28 | ralrimiv | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐹  ∘r   ≤  𝐺 )  →  ∀ ℎ  ∈  dom  ∫1 ( ℎ  ∘r   ≤  𝐹  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 30 |  | simp1 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐹  ∘r   ≤  𝐺 )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 31 |  | itg2cl | ⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐹  ∘r   ≤  𝐺 )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 33 |  | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ∫2 ‘ 𝐺 )  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ ℎ  ∈  dom  ∫1 ( ℎ  ∘r   ≤  𝐹  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 34 | 30 32 33 | syl2anc | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐹  ∘r   ≤  𝐺 )  →  ( ( ∫2 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ ℎ  ∈  dom  ∫1 ( ℎ  ∘r   ≤  𝐹  →  ( ∫1 ‘ ℎ )  ≤  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 35 | 29 34 | mpbird | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐹  ∘r   ≤  𝐺 )  →  ( ∫2 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐺 ) ) |