Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
⊢ ℝ ∈ V |
2 |
1
|
a1i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ℝ ∈ V ) |
3 |
|
i1ff |
⊢ ( ℎ ∈ dom ∫1 → ℎ : ℝ ⟶ ℝ ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ℎ : ℝ ⟶ ℝ ) |
5 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
6 |
|
fss |
⊢ ( ( ℎ : ℝ ⟶ ℝ ∧ ℝ ⊆ ℝ* ) → ℎ : ℝ ⟶ ℝ* ) |
7 |
4 5 6
|
sylancl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ℎ : ℝ ⟶ ℝ* ) |
8 |
|
simpll |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
9 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
10 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐹 : ℝ ⟶ ℝ* ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ℝ* ) |
12 |
|
simplr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
13 |
|
fss |
⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐺 : ℝ ⟶ ℝ* ) |
14 |
12 9 13
|
sylancl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → 𝐺 : ℝ ⟶ ℝ* ) |
15 |
|
xrletr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
16 |
15
|
adantl |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
17 |
2 7 11 14 16
|
caoftrn |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ( ( ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺 ) → ℎ ∘r ≤ 𝐺 ) ) |
18 |
|
simplr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
19 |
|
simprl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) ) → ℎ ∈ dom ∫1 ) |
20 |
|
simprr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) ) → ℎ ∘r ≤ 𝐺 ) |
21 |
|
itg2ub |
⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) |
22 |
18 19 20 21
|
syl3anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) ) → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) |
23 |
22
|
expr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ( ℎ ∘r ≤ 𝐺 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
24 |
17 23
|
syld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ( ( ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
25 |
24
|
ancomsd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ( ( 𝐹 ∘r ≤ 𝐺 ∧ ℎ ∘r ≤ 𝐹 ) → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
26 |
25
|
exp4b |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) → ( ℎ ∈ dom ∫1 → ( 𝐹 ∘r ≤ 𝐺 → ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) ) |
27 |
26
|
com23 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) → ( 𝐹 ∘r ≤ 𝐺 → ( ℎ ∈ dom ∫1 → ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) ) |
28 |
27
|
3impia |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ℎ ∈ dom ∫1 → ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) |
29 |
28
|
ralrimiv |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ∀ ℎ ∈ dom ∫1 ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
30 |
|
simp1 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
31 |
|
itg2cl |
⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
32 |
31
|
3ad2ant2 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
33 |
|
itg2leub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ ℎ ∈ dom ∫1 ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) |
34 |
30 32 33
|
syl2anc |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ ℎ ∈ dom ∫1 ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) |
35 |
29 34
|
mpbird |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ) |