Step |
Hyp |
Ref |
Expression |
1 |
|
itg2lea.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
2 |
|
itg2lea.2 |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
3 |
|
itg2lea.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
itg2lea.4 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) |
5 |
|
itg2lea.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝑓 ∈ dom ∫1 ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐴 ⊆ ℝ ) |
9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( vol* ‘ 𝐴 ) = 0 ) |
10 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
11 |
10
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝑓 : ℝ ⟶ ℝ ) |
12 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 𝑥 ∈ ℝ ) |
13 |
|
ffvelrn |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
15 |
14
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ* ) |
16 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
18 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
19 |
17 12 18
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
20 |
16 19
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
21 |
|
ffvelrn |
⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
22 |
6 12 21
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
23 |
16 22
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
24 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝑓 ∘r ≤ 𝐹 ) |
25 |
11
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝑓 Fn ℝ ) |
26 |
17
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐹 Fn ℝ ) |
27 |
|
reex |
⊢ ℝ ∈ V |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ℝ ∈ V ) |
29 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
30 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
31 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
32 |
25 26 28 28 29 30 31
|
ofrfval |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
33 |
24 32
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
34 |
33
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
35 |
12 34
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
36 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
37 |
15 20 23 35 36
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
38 |
6 7 8 9 37
|
itg2uba |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) |
39 |
38
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
40 |
39
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
41 |
|
itg2cl |
⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
42 |
2 41
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
43 |
|
itg2leub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) |
44 |
1 42 43
|
syl2anc |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) |
45 |
40 44
|
mpbird |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ) |