| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2lea.1 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 2 |  | itg2lea.2 | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | itg2lea.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 4 |  | itg2lea.4 | ⊢ ( 𝜑  →  ( vol* ‘ 𝐴 )  =  0 ) | 
						
							| 5 |  | itg2lea.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 6 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 7 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝑓  ∈  dom  ∫1 ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 9 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( vol* ‘ 𝐴 )  =  0 ) | 
						
							| 10 |  | i1ff | ⊢ ( 𝑓  ∈  dom  ∫1  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 11 | 10 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 12 |  | eldifi | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 13 |  | ffvelcdm | ⊢ ( ( 𝑓 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 14 | 11 12 13 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 15 | 14 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 16 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 17 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 18 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 19 | 17 12 18 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 20 | 16 19 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 21 |  | ffvelcdm | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 22 | 6 12 21 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 23 | 16 22 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 24 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝑓  ∘r   ≤  𝐹 ) | 
						
							| 25 | 11 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝑓  Fn  ℝ ) | 
						
							| 26 | 17 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝐹  Fn  ℝ ) | 
						
							| 27 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ℝ  ∈  V ) | 
						
							| 29 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 30 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 31 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 32 | 25 26 28 28 29 30 31 | ofrfval | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( 𝑓  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 33 | 24 32 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 34 | 33 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 35 | 12 34 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝑓 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 36 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 37 | 15 20 23 35 36 | xrletrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝑓 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 38 | 6 7 8 9 37 | itg2uba | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ∫1 ‘ 𝑓 )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 39 | 38 | expr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 40 | 39 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 41 |  | itg2cl | ⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 42 | 2 41 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 43 |  | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ∫2 ‘ 𝐺 )  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 44 | 1 42 43 | syl2anc | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 45 | 40 44 | mpbird | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ≤  ( ∫2 ‘ 𝐺 ) ) |