Step |
Hyp |
Ref |
Expression |
1 |
|
itg2cl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
3 |
|
simp2 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
4 |
|
itg2ge0 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) |
6 |
|
simp3 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) |
7 |
|
xrrege0 |
⊢ ( ( ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* ∧ 𝐴 ∈ ℝ ) ∧ ( 0 ≤ ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
8 |
2 3 5 6 7
|
syl22anc |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |