| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  =  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } | 
						
							| 2 | 1 | itg2val | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  =  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  ℝ* )  →  ( ∫2 ‘ 𝐹 )  =  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 4 | 3 | breq1d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐹 )  ≤  𝐴  ↔  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  )  ≤  𝐴 ) ) | 
						
							| 5 | 1 | itg2lcl | ⊢ { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  ⊆  ℝ* | 
						
							| 6 |  | supxrleub | ⊢ ( ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  ⊆  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } 𝑧  ≤  𝐴 ) ) | 
						
							| 7 | 5 6 | mpan | ⊢ ( 𝐴  ∈  ℝ*  →  ( sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } 𝑧  ≤  𝐴 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  ℝ* )  →  ( sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } 𝑧  ≤  𝐴 ) ) | 
						
							| 9 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  ( ∫1 ‘ 𝑔 )  ↔  𝑧  =  ( ∫1 ‘ 𝑔 ) ) ) | 
						
							| 10 | 9 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  ↔  ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  ↔  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) ) ) ) | 
						
							| 12 | 11 | ralab | ⊢ ( ∀ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } 𝑧  ≤  𝐴  ↔  ∀ 𝑧 ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 13 |  | r19.23v | ⊢ ( ∀ 𝑔  ∈  dom  ∫1 ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 )  ↔  ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 14 |  | ancomst | ⊢ ( ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 )  ↔  ( ( 𝑧  =  ( ∫1 ‘ 𝑔 )  ∧  𝑔  ∘r   ≤  𝐹 )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 15 |  | impexp | ⊢ ( ( ( 𝑧  =  ( ∫1 ‘ 𝑔 )  ∧  𝑔  ∘r   ≤  𝐹 )  →  𝑧  ≤  𝐴 )  ↔  ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 )  ↔  ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 17 | 16 | ralbii | ⊢ ( ∀ 𝑔  ∈  dom  ∫1 ( ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 18 | 13 17 | bitr3i | ⊢ ( ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 19 | 18 | albii | ⊢ ( ∀ 𝑧 ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑧 ∀ 𝑔  ∈  dom  ∫1 ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 20 |  | ralcom4 | ⊢ ( ∀ 𝑔  ∈  dom  ∫1 ∀ 𝑧 ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) )  ↔  ∀ 𝑧 ∀ 𝑔  ∈  dom  ∫1 ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 21 |  | fvex | ⊢ ( ∫1 ‘ 𝑔 )  ∈  V | 
						
							| 22 |  | breq1 | ⊢ ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑧  ≤  𝐴  ↔  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) | 
						
							| 23 | 22 | imbi2d | ⊢ ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 )  ↔  ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) ) | 
						
							| 24 | 21 23 | ceqsalv | ⊢ ( ∀ 𝑧 ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) )  ↔  ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) | 
						
							| 25 | 24 | ralbii | ⊢ ( ∀ 𝑔  ∈  dom  ∫1 ∀ 𝑧 ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) | 
						
							| 26 | 20 25 | bitr3i | ⊢ ( ∀ 𝑧 ∀ 𝑔  ∈  dom  ∫1 ( 𝑧  =  ( ∫1 ‘ 𝑔 )  →  ( 𝑔  ∘r   ≤  𝐹  →  𝑧  ≤  𝐴 ) )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) | 
						
							| 27 | 19 26 | bitri | ⊢ ( ∀ 𝑧 ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑧  =  ( ∫1 ‘ 𝑔 ) )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) | 
						
							| 28 | 12 27 | bitri | ⊢ ( ∀ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } 𝑧  ≤  𝐴  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) | 
						
							| 29 | 8 28 | bitrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  ℝ* )  →  ( sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) ) | 
						
							| 30 | 4 29 | bitrd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐹 )  ≤  𝐴  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑔 )  ≤  𝐴 ) ) ) |