Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
2 |
1
|
itg2val |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
4 |
3
|
breq1d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ↔ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ) ) |
5 |
1
|
itg2lcl |
⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* |
6 |
|
supxrleub |
⊢ ( ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ) ) |
7 |
5 6
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ) ) |
9 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( ∫1 ‘ 𝑔 ) ↔ 𝑧 = ( ∫1 ‘ 𝑔 ) ) ) |
10 |
9
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) ) ) |
12 |
11
|
ralab |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑧 ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ) |
13 |
|
r19.23v |
⊢ ( ∀ 𝑔 ∈ dom ∫1 ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ) |
14 |
|
ancomst |
⊢ ( ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ( 𝑧 = ( ∫1 ‘ 𝑔 ) ∧ 𝑔 ∘r ≤ 𝐹 ) → 𝑧 ≤ 𝐴 ) ) |
15 |
|
impexp |
⊢ ( ( ( 𝑧 = ( ∫1 ‘ 𝑔 ) ∧ 𝑔 ∘r ≤ 𝐹 ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
17 |
16
|
ralbii |
⊢ ( ∀ 𝑔 ∈ dom ∫1 ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
18 |
13 17
|
bitr3i |
⊢ ( ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
19 |
18
|
albii |
⊢ ( ∀ 𝑧 ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
20 |
|
ralcom4 |
⊢ ( ∀ 𝑔 ∈ dom ∫1 ∀ 𝑧 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ↔ ∀ 𝑧 ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
21 |
|
fvex |
⊢ ( ∫1 ‘ 𝑔 ) ∈ V |
22 |
|
breq1 |
⊢ ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑧 ≤ 𝐴 ↔ ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ↔ ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) ) |
24 |
21 23
|
ceqsalv |
⊢ ( ∀ 𝑧 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ↔ ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
25 |
24
|
ralbii |
⊢ ( ∀ 𝑔 ∈ dom ∫1 ∀ 𝑧 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
26 |
20 25
|
bitr3i |
⊢ ( ∀ 𝑧 ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
27 |
19 26
|
bitri |
⊢ ( ∀ 𝑧 ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
28 |
12 27
|
bitri |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
29 |
8 28
|
bitrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) ) |
30 |
4 29
|
bitrd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) ) |