| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2val.1 | ⊢ 𝐿  =  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } | 
						
							| 2 |  | eqid | ⊢ ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝐺 ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔  ∘r   ≤  𝐹  ↔  𝐺  ∘r   ≤  𝐹 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( ∫1 ‘ 𝑔 )  =  ( ∫1 ‘ 𝐺 ) ) | 
						
							| 5 | 4 | eqeq2d | ⊢ ( 𝑔  =  𝐺  →  ( ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝑔 )  ↔  ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝐺 ) ) ) | 
						
							| 6 | 3 5 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑔  ∘r   ≤  𝐹  ∧  ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝑔 ) )  ↔  ( 𝐺  ∘r   ≤  𝐹  ∧  ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝐺 ) ) ) ) | 
						
							| 7 | 6 | rspcev | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  ( 𝐺  ∘r   ≤  𝐹  ∧  ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝐺 ) ) )  →  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝑔 ) ) ) | 
						
							| 8 | 2 7 | mpanr2 | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  𝐺  ∘r   ≤  𝐹 )  →  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝑔 ) ) ) | 
						
							| 9 | 1 | itg2l | ⊢ ( ( ∫1 ‘ 𝐺 )  ∈  𝐿  ↔  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  ( ∫1 ‘ 𝐺 )  =  ( ∫1 ‘ 𝑔 ) ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐺 )  ∈  𝐿 ) |