Step |
Hyp |
Ref |
Expression |
1 |
|
itg2val.1 |
⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
2 |
|
eqid |
⊢ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝐺 ) |
3 |
|
breq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∘r ≤ 𝐹 ↔ 𝐺 ∘r ≤ 𝐹 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( ∫1 ‘ 𝑔 ) = ( ∫1 ‘ 𝐺 ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ↔ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝐺 ) ) ) |
6 |
3 5
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ) ↔ ( 𝐺 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝐺 ) ) ) ) |
7 |
6
|
rspcev |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ ( 𝐺 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝐺 ) ) ) → ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ) ) |
8 |
2 7
|
mpanr2 |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ) ) |
9 |
1
|
itg2l |
⊢ ( ( ∫1 ‘ 𝐺 ) ∈ 𝐿 ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ) ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ∈ 𝐿 ) |