| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mono.1 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 2 |  | itg2mono.2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  MblFn ) | 
						
							| 3 |  | itg2mono.3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 4 |  | itg2mono.4 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 5 |  | itg2mono.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 6 |  | itg2mono.6 | ⊢ 𝑆  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 7 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 8 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ℝ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 9 | 3 7 8 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 10 | 9 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 11 | 10 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 12 | 11 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℝ ) | 
						
							| 13 | 12 | frnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ⊆  ℝ ) | 
						
							| 14 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 15 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 16 | 15 11 | dmmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ℕ ) | 
						
							| 17 | 14 16 | eleqtrrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  1  ∈  dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | ne0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅ ) | 
						
							| 19 |  | dm0rn0 | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ∅ ) | 
						
							| 20 | 19 | necon3bii | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅ ) | 
						
							| 21 | 18 20 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅ ) | 
						
							| 22 | 12 | ffnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ ) | 
						
							| 23 |  | breq1 | ⊢ ( 𝑧  =  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  →  ( 𝑧  ≤  𝑦  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 24 | 23 | ralrn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 25 | 22 24 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 27 | 26 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 28 |  | fvex | ⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V | 
						
							| 29 | 27 15 28 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 30 | 29 | breq1d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦  ↔  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 31 | 30 | ralbiia | ⊢ ( ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 32 | 27 | breq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 33 | 32 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 34 | 31 33 | bitr4i | ⊢ ( ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦  ↔  ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 35 | 25 34 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦  ↔  ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 36 | 35 | rexbidv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 37 | 5 36 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦 ) | 
						
							| 38 | 13 21 37 | suprcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 39 | 38 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ℝ* ) | 
						
							| 40 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  0  ∈  ℝ ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 42 | 41 | feq1d | ⊢ ( 𝑛  =  1  →  ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 43 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 44 | 14 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 45 | 42 43 44 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 46 | 45 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 47 |  | elrege0 | ⊢ ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) ) | 
						
							| 48 | 46 47 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) ) | 
						
							| 49 | 48 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 50 | 48 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  0  ≤  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) | 
						
							| 51 | 41 | fveq1d | ⊢ ( 𝑛  =  1  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) | 
						
							| 52 |  | fvex | ⊢ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 )  ∈  V | 
						
							| 53 | 51 15 52 | fvmpt | ⊢ ( 1  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 )  =  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) | 
						
							| 54 | 14 53 | ax-mp | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 )  =  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) | 
						
							| 55 |  | fnfvelrn | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ  ∧  1  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 56 | 22 14 55 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 57 | 54 56 | eqeltrrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 58 | 13 21 37 57 | suprubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 1 ) ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 59 | 40 49 38 50 58 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  0  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 60 |  | elxrge0 | ⊢ ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ( 0 [,] +∞ )  ↔  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ℝ*  ∧  0  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 61 | 39 59 60 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 62 | 61 1 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 63 |  | itg2cl | ⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 64 | 62 63 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 65 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 66 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 67 | 3 65 66 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 68 |  | itg2cl | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 70 | 69 | fmpttd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) | 
						
							| 71 | 70 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ* ) | 
						
							| 72 |  | supxrcl | ⊢ ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ*  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 73 | 71 72 | syl | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 74 | 6 73 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ* ) | 
						
							| 75 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 )  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  MblFn ) | 
						
							| 76 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 )  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 77 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 )  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 78 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 )  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) )  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 79 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 )  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) )  →  𝑓  ∈  dom  ∫1 ) | 
						
							| 80 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 )  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) )  →  𝑓  ∘r   ≤  𝐺 ) | 
						
							| 81 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 )  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) )  →  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) | 
						
							| 82 | 1 75 76 77 78 6 79 80 81 | itg2monolem3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 )  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) )  →  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) | 
						
							| 83 | 82 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 ) )  →  ( ¬  ( ∫1 ‘ 𝑓 )  ≤  𝑆  →  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) ) | 
						
							| 84 | 83 | pm2.18d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐺 ) )  →  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) | 
						
							| 85 | 84 | expr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  𝐺  →  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) ) | 
						
							| 86 | 85 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐺  →  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) ) | 
						
							| 87 |  | itg2leub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑆  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐺 )  ≤  𝑆  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐺  →  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) ) ) | 
						
							| 88 | 62 74 87 | syl2anc | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐺 )  ≤  𝑆  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐺  →  ( ∫1 ‘ 𝑓 )  ≤  𝑆 ) ) ) | 
						
							| 89 | 86 88 | mpbird | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ≤  𝑆 ) | 
						
							| 90 | 26 | feq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 91 | 90 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 92 | 43 91 | sylib | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 93 | 92 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 94 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 95 | 93 65 94 | sylancl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 96 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 97 | 13 21 37 | 3jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦 ) ) | 
						
							| 98 | 97 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦 ) ) | 
						
							| 99 | 29 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 100 | 22 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ ) | 
						
							| 101 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝑚  ∈  ℕ ) | 
						
							| 102 |  | fnfvelrn | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 103 | 100 101 102 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 104 | 99 103 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 105 |  | suprub | ⊢ ( ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦 )  ∧  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 106 | 98 104 105 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 107 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 108 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 109 | 108 | supex | ⊢ sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  V | 
						
							| 110 | 1 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  V )  →  ( 𝐺 ‘ 𝑥 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 111 | 107 109 110 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 112 | 106 111 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 113 | 112 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑥  ∈  ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 114 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) | 
						
							| 115 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 116 | 114 115 | breq12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 117 | 116 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 )  ↔  ∀ 𝑧  ∈  ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 118 | 113 117 | sylib | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑧  ∈  ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 119 | 93 | ffnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐹 ‘ 𝑚 )  Fn  ℝ ) | 
						
							| 120 | 38 1 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 121 | 120 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ℝ ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐺  Fn  ℝ ) | 
						
							| 123 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 124 | 123 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 125 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 126 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) | 
						
							| 127 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑧  ∈  ℝ )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 128 | 119 122 124 124 125 126 127 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑚 )  ∘r   ≤  𝐺  ↔  ∀ 𝑧  ∈  ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 129 | 118 128 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐹 ‘ 𝑚 )  ∘r   ≤  𝐺 ) | 
						
							| 130 |  | itg2le | ⊢ ( ( ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝐹 ‘ 𝑚 )  ∘r   ≤  𝐺 )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 131 | 95 96 129 130 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 132 | 131 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 133 | 70 | ffnd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  Fn  ℕ ) | 
						
							| 134 |  | breq1 | ⊢ ( 𝑧  =  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  →  ( 𝑧  ≤  ( ∫2 ‘ 𝐺 )  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 135 | 134 | ralrn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 136 | 133 135 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 137 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 138 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 139 |  | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) )  ∈  V | 
						
							| 140 | 137 138 139 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  =  ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 141 | 140 | breq1d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐺 )  ↔  ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 142 | 141 | ralbiia | ⊢ ( ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ 𝑚  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 143 | 136 142 | bitrdi | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ 𝑚  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 144 | 132 143 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 145 |  | supxrleub | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ*  ∧  ( ∫2 ‘ 𝐺 )  ∈  ℝ* )  →  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 146 | 71 64 145 | syl2anc | ⊢ ( 𝜑  →  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ≤  ( ∫2 ‘ 𝐺 )  ↔  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 147 | 144 146 | mpbird | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 148 | 6 147 | eqbrtrid | ⊢ ( 𝜑  →  𝑆  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 149 | 64 74 89 148 | xrletrid | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  =  𝑆 ) |