| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mono.1 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 2 |  | itg2mono.2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  MblFn ) | 
						
							| 3 |  | itg2mono.3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 4 |  | itg2mono.4 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 5 |  | itg2mono.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 6 |  | itg2mono.6 | ⊢ 𝑆  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 7 |  | itg2mono.7 | ⊢ ( 𝜑  →  𝑇  ∈  ( 0 (,) 1 ) ) | 
						
							| 8 |  | itg2mono.8 | ⊢ ( 𝜑  →  𝐻  ∈  dom  ∫1 ) | 
						
							| 9 |  | itg2mono.9 | ⊢ ( 𝜑  →  𝐻  ∘r   ≤  𝐺 ) | 
						
							| 10 |  | itg2mono.10 | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 11 |  | itg2mono.11 | ⊢ 𝐴  =  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 12 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 13 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 15 |  | readdcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  +  𝑦 )  ∈  ℝ ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℝ ) | 
						
							| 17 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 18 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ℝ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 19 | 3 17 18 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 20 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 21 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 22 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ* )  →  ( 𝑇  ∈  ( 0 (,) 1 )  ↔  ( 𝑇  ∈  ℝ  ∧  0  <  𝑇  ∧  𝑇  <  1 ) ) ) | 
						
							| 23 | 20 21 22 | mp2an | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  ↔  ( 𝑇  ∈  ℝ  ∧  0  <  𝑇  ∧  𝑇  <  1 ) ) | 
						
							| 24 | 7 23 | sylib | ⊢ ( 𝜑  →  ( 𝑇  ∈  ℝ  ∧  0  <  𝑇  ∧  𝑇  <  1 ) ) | 
						
							| 25 | 24 | simp1d | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 26 | 25 | renegcld | ⊢ ( 𝜑  →  - 𝑇  ∈  ℝ ) | 
						
							| 27 | 8 26 | i1fmulc | ⊢ ( 𝜑  →  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 )  ∈  dom  ∫1 ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 )  ∈  dom  ∫1 ) | 
						
							| 29 |  | i1ff | ⊢ ( ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 )  ∈  dom  ∫1  →  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) : ℝ ⟶ ℝ ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) : ℝ ⟶ ℝ ) | 
						
							| 31 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 33 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 34 | 16 19 30 32 32 33 | off | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) : ℝ ⟶ ℝ ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) : ℝ ⟶ ℝ ) | 
						
							| 36 | 35 | ffnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  Fn  ℝ ) | 
						
							| 37 |  | elpreima | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  Fn  ℝ  →  ( 𝑥  ∈  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ( -∞ (,) 0 ) ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ( -∞ (,) 0 ) ) ) ) | 
						
							| 39 | 14 38 | mpbirand | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) )  ↔  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ( -∞ (,) 0 ) ) ) | 
						
							| 40 |  | elioomnf | ⊢ ( 0  ∈  ℝ*  →  ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ( -∞ (,) 0 )  ↔  ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ℝ  ∧  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  <  0 ) ) ) | 
						
							| 41 | 20 40 | ax-mp | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ( -∞ (,) 0 )  ↔  ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ℝ  ∧  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  <  0 ) ) | 
						
							| 42 | 34 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 43 | 42 | biantrurd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  <  0  ↔  ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ℝ  ∧  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  <  0 ) ) ) | 
						
							| 44 | 41 43 | bitr4id | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  ∈  ( -∞ (,) 0 )  ↔  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  <  0 ) ) | 
						
							| 45 | 3 | ffnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  Fn  ℝ ) | 
						
							| 46 | 30 | ffnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 )  Fn  ℝ ) | 
						
							| 47 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 48 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  - 𝑇  ∈  ℝ ) | 
						
							| 49 |  | i1ff | ⊢ ( 𝐻  ∈  dom  ∫1  →  𝐻 : ℝ ⟶ ℝ ) | 
						
							| 50 | 8 49 | syl | ⊢ ( 𝜑  →  𝐻 : ℝ ⟶ ℝ ) | 
						
							| 51 | 50 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  ℝ ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐻  Fn  ℝ ) | 
						
							| 53 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐻 ‘ 𝑥 )  =  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 54 | 32 48 52 53 | ofc1 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ‘ 𝑥 )  =  ( - 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 55 | 25 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℂ ) | 
						
							| 57 | 50 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 58 | 57 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 59 | 58 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 60 | 56 59 | mulneg1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( - 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  =  - ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 61 | 54 60 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ‘ 𝑥 )  =  - ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 62 | 45 46 32 32 33 47 61 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  =  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  +  - ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 63 | 19 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 64 | 63 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 65 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 66 | 65 57 | remulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 67 | 66 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 68 | 67 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 69 | 64 68 | negsubd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  +  - ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) )  =  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  −  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 70 | 62 69 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  =  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  −  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 71 | 70 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  <  0  ↔  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  −  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) )  <  0 ) ) | 
						
							| 72 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  0  ∈  ℝ ) | 
						
							| 73 | 63 67 72 | ltsubaddd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  −  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) )  <  0  ↔  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  ( 0  +  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) ) | 
						
							| 74 | 68 | addlidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 0  +  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) )  =  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 75 | 74 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  ( 0  +  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) )  ↔  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 76 | 71 73 75 | 3bitrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) ‘ 𝑥 )  <  0  ↔  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 77 | 39 44 76 | 3bitrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) )  ↔  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 78 | 77 | notbid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ¬  𝑥  ∈  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) )  ↔  ¬  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 79 |  | eldif | ⊢ ( 𝑥  ∈  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ¬  𝑥  ∈  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) ) ) | 
						
							| 80 | 79 | baib | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) )  ↔  ¬  𝑥  ∈  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) ) ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) )  ↔  ¬  𝑥  ∈  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) ) ) | 
						
							| 82 | 67 63 | lenltd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ¬  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 83 | 78 81 82 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) )  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 84 | 83 | rabbi2dva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ℝ  ∩  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) ) )  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 85 |  | rembl | ⊢ ℝ  ∈  dom  vol | 
						
							| 86 |  | i1fmbf | ⊢ ( ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 )  ∈  dom  ∫1  →  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 )  ∈  MblFn ) | 
						
							| 87 | 28 86 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 )  ∈  MblFn ) | 
						
							| 88 | 2 87 | mbfadd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  ∈  MblFn ) | 
						
							| 89 |  | mbfima | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  ∈  MblFn  ∧  ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) ) : ℝ ⟶ ℝ )  →  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) )  ∈  dom  vol ) | 
						
							| 90 | 88 34 89 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) )  ∈  dom  vol ) | 
						
							| 91 |  | cmmbl | ⊢ ( ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) )  ∈  dom  vol  →  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) )  ∈  dom  vol ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) )  ∈  dom  vol ) | 
						
							| 93 |  | inmbl | ⊢ ( ( ℝ  ∈  dom  vol  ∧  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) )  ∈  dom  vol )  →  ( ℝ  ∩  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) ) )  ∈  dom  vol ) | 
						
							| 94 | 85 92 93 | sylancr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ℝ  ∩  ( ℝ  ∖  ( ◡ ( ( 𝐹 ‘ 𝑛 )  ∘f   +  ( ( ℝ  ×  { - 𝑇 } )  ∘f   ·  𝐻 ) )  “  ( -∞ (,) 0 ) ) ) )  ∈  dom  vol ) | 
						
							| 95 | 84 94 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  ∈  dom  vol ) | 
						
							| 96 | 95 11 | fmptd | ⊢ ( 𝜑  →  𝐴 : ℕ ⟶ dom  vol ) | 
						
							| 97 | 4 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 98 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 99 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  =  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 100 | 98 99 | breq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝐹 ‘ 𝑗 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 101 | 100 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ↔  ∀ 𝑗  ∈  ℕ ( 𝐹 ‘ 𝑗 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 102 | 97 101 | sylib | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ℕ ( 𝐹 ‘ 𝑗 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 103 | 102 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 104 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 105 | 98 | feq1d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 106 | 105 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ∀ 𝑗  ∈  ℕ ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 107 | 104 106 | sylib | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ℕ ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 108 | 107 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 109 | 108 | ffnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  Fn  ℝ ) | 
						
							| 110 |  | peano2nn | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 111 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 112 | 111 | feq1d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( 𝐹 ‘ ( 𝑗  +  1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 113 | 112 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 𝑗  +  1 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑗  +  1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 114 | 104 110 113 | syl2an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑗  +  1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 115 | 114 | ffnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑗  +  1 ) )  Fn  ℝ ) | 
						
							| 116 | 31 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 117 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 118 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) | 
						
							| 119 | 109 115 116 116 33 117 118 | ofrfval | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑗 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑗  +  1 ) )  ↔  ∀ 𝑥  ∈  ℝ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 120 | 103 119 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ∀ 𝑥  ∈  ℝ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) | 
						
							| 121 | 120 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) | 
						
							| 122 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 123 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝐻 : ℝ ⟶ ℝ ) | 
						
							| 124 | 123 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 125 | 122 124 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 126 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ℝ )  →  ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ℝ ) | 
						
							| 127 | 108 17 126 | sylancl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ℝ ) | 
						
							| 128 | 127 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 129 |  | fss | ⊢ ( ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ℝ )  →  ( 𝐹 ‘ ( 𝑗  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 130 | 114 17 129 | sylancl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑗  +  1 ) ) : ℝ ⟶ ℝ ) | 
						
							| 131 | 130 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 132 |  | letr | ⊢ ( ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∧  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 133 | 125 128 131 132 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∧  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 134 | 121 133 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 135 | 134 | ss2rabdv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) }  ⊆  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) } ) | 
						
							| 136 | 98 | fveq1d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 137 | 136 | breq2d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 138 | 137 | rabbidv | ⊢ ( 𝑛  =  𝑗  →  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) | 
						
							| 139 | 31 | rabex | ⊢ { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) }  ∈  V | 
						
							| 140 | 138 11 139 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐴 ‘ 𝑗 )  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) | 
						
							| 141 | 140 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐴 ‘ 𝑗 )  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) | 
						
							| 142 | 110 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 143 | 111 | fveq1d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) | 
						
							| 144 | 143 | breq2d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 145 | 144 | rabbidv | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) } ) | 
						
							| 146 | 31 | rabex | ⊢ { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) }  ∈  V | 
						
							| 147 | 145 11 146 | fvmpt | ⊢ ( ( 𝑗  +  1 )  ∈  ℕ  →  ( 𝐴 ‘ ( 𝑗  +  1 ) )  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) } ) | 
						
							| 148 | 142 147 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐴 ‘ ( 𝑗  +  1 ) )  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ ( 𝑗  +  1 ) ) ‘ 𝑥 ) } ) | 
						
							| 149 | 135 141 148 | 3sstr4d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐴 ‘ 𝑗 )  ⊆  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 150 | 66 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 151 | 57 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 152 | 63 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 153 | 152 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℝ ) | 
						
							| 154 | 153 | frnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ⊆  ℝ ) | 
						
							| 155 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 156 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 157 | 156 152 | dmmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ℕ ) | 
						
							| 158 | 155 157 | eleqtrrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  1  ∈  dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 159 | 158 | ne0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅ ) | 
						
							| 160 |  | dm0rn0 | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ∅ ) | 
						
							| 161 | 160 | necon3bii | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅ ) | 
						
							| 162 | 159 161 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅ ) | 
						
							| 163 | 153 | ffnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ ) | 
						
							| 164 |  | breq1 | ⊢ ( 𝑧  =  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  →  ( 𝑧  ≤  𝑦  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 165 | 164 | ralrn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 166 | 163 165 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦 ) ) | 
						
							| 167 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 168 | 167 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 169 |  | fvex | ⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V | 
						
							| 170 | 168 156 169 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 171 | 170 | breq1d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦  ↔  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 172 | 171 | ralbiia | ⊢ ( ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 173 | 168 | breq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 174 | 173 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 175 | 172 174 | bitr4i | ⊢ ( ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 )  ≤  𝑦  ↔  ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 176 | 166 175 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦  ↔  ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 177 | 176 | rexbidv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 178 | 5 177 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦 ) | 
						
							| 179 | 154 162 178 | suprcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 180 | 179 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 181 | 24 | simp3d | ⊢ ( 𝜑  →  𝑇  <  1 ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  𝑇  <  1 ) | 
						
							| 183 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 184 |  | 1red | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 185 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  0  <  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 186 |  | ltmul1 | ⊢ ( ( 𝑇  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( 𝐻 ‘ 𝑥 )  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝑇  <  1  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( 1  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 187 | 183 184 151 185 186 | syl112anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝑇  <  1  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( 1  ·  ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 188 | 182 187 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( 1  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 189 | 151 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 190 | 189 | mullidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 1  ·  ( 𝐻 ‘ 𝑥 ) )  =  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 191 | 188 190 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 192 | 179 1 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 193 | 192 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ℝ ) | 
						
							| 194 | 31 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 195 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 196 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 197 | 196 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) | 
						
							| 198 | 197 | rneqd | ⊢ ( 𝑥  =  𝑦  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) | 
						
							| 199 | 198 | supeq1d | ⊢ ( 𝑥  =  𝑦  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 200 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 201 | 200 | supex | ⊢ sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  )  ∈  V | 
						
							| 202 | 199 1 201 | fvmpt | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝐺 ‘ 𝑦 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 203 | 202 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐺 ‘ 𝑦 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 204 | 51 193 194 194 33 195 203 | ofrfval | ⊢ ( 𝜑  →  ( 𝐻  ∘r   ≤  𝐺  ↔  ∀ 𝑦  ∈  ℝ ( 𝐻 ‘ 𝑦 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 205 | 9 204 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℝ ( 𝐻 ‘ 𝑦 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 206 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐻 ‘ 𝑥 )  =  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 207 | 206 199 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐻 ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ↔  ( 𝐻 ‘ 𝑦 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 208 | 207 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  ℝ ( 𝐻 ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ↔  ∀ 𝑦  ∈  ℝ ( 𝐻 ‘ 𝑦 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 209 | 205 208 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝐻 ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 210 | 209 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐻 ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 211 | 210 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝐻 ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 212 | 150 151 180 191 211 | ltletrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 213 | 154 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ⊆  ℝ ) | 
						
							| 214 | 162 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅ ) | 
						
							| 215 | 178 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦 ) | 
						
							| 216 |  | suprlub | ⊢ ( ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧  ≤  𝑦 )  ∧  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ )  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ↔  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  𝑤 ) ) | 
						
							| 217 | 213 214 215 150 216 | syl31anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ↔  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  𝑤 ) ) | 
						
							| 218 | 212 217 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  𝑤 ) | 
						
							| 219 | 163 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ ) | 
						
							| 220 |  | breq2 | ⊢ ( 𝑤  =  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  𝑤  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) | 
						
							| 221 | 220 | rexrn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  Fn  ℕ  →  ( ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  𝑤  ↔  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) | 
						
							| 222 | 219 221 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  𝑤  ↔  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) | 
						
							| 223 |  | fvex | ⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  V | 
						
							| 224 | 136 156 223 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 225 | 224 | breq2d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 226 | 225 | rexbiia | ⊢ ( ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 )  ↔  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 227 | 222 226 | bitrdi | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  𝑤  ↔  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 228 | 218 227 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 229 | 183 151 | remulcld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 230 | 108 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 231 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 232 | 230 231 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 233 |  | elrege0 | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 234 | 232 233 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 235 | 234 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 236 | 235 | adantlrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 237 |  | ltle | ⊢ ( ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ )  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 238 | 229 236 237 | syl2an2r | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 239 | 238 | reximdva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ( ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  <  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  →  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 240 | 228 239 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  ( 𝐻 ‘ 𝑥 ) ) )  →  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 241 | 240 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  0  <  ( 𝐻 ‘ 𝑥 ) )  →  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 242 | 155 | ne0ii | ⊢ ℕ  ≠  ∅ | 
						
							| 243 | 66 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 244 | 243 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 245 |  | 0red | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  0  ∈  ℝ ) | 
						
							| 246 | 234 | adantlrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 247 | 246 | simpld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 248 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( 𝐻 ‘ 𝑥 )  ≤  0 ) | 
						
							| 249 | 57 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 250 | 249 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 251 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  𝑇  ∈  ℝ ) | 
						
							| 252 | 24 | simp2d | ⊢ ( 𝜑  →  0  <  𝑇 ) | 
						
							| 253 | 252 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  0  <  𝑇 ) | 
						
							| 254 |  | lemul2 | ⊢ ( ( ( 𝐻 ‘ 𝑥 )  ∈  ℝ  ∧  0  ∈  ℝ  ∧  ( 𝑇  ∈  ℝ  ∧  0  <  𝑇 ) )  →  ( ( 𝐻 ‘ 𝑥 )  ≤  0  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( 𝑇  ·  0 ) ) ) | 
						
							| 255 | 250 245 251 253 254 | syl112anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐻 ‘ 𝑥 )  ≤  0  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( 𝑇  ·  0 ) ) ) | 
						
							| 256 | 248 255 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( 𝑇  ·  0 ) ) | 
						
							| 257 | 251 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  𝑇  ∈  ℂ ) | 
						
							| 258 | 257 | mul01d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( 𝑇  ·  0 )  =  0 ) | 
						
							| 259 | 256 258 | breqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  0 ) | 
						
							| 260 | 246 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  0  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 261 | 244 245 247 259 260 | letrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  ∧  𝑗  ∈  ℕ )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 262 | 261 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  →  ∀ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 263 |  | r19.2z | ⊢ ( ( ℕ  ≠  ∅  ∧  ∀ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) )  →  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 264 | 242 262 263 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 ) )  →  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 265 | 264 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝐻 ‘ 𝑥 )  ≤  0 )  →  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 266 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  0  ∈  ℝ ) | 
						
							| 267 | 241 265 266 57 | ltlecasei | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 268 | 267 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 269 |  | rabid2 | ⊢ ( ℝ  =  { 𝑥  ∈  ℝ  ∣  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) }  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 270 | 268 269 | sylibr | ⊢ ( 𝜑  →  ℝ  =  { 𝑥  ∈  ℝ  ∣  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) | 
						
							| 271 |  | iunrab | ⊢ ∪  𝑗  ∈  ℕ { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  ℝ  ∣  ∃ 𝑗  ∈  ℕ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } | 
						
							| 272 | 270 271 | eqtr4di | ⊢ ( 𝜑  →  ℝ  =  ∪  𝑗  ∈  ℕ { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) | 
						
							| 273 | 141 | iuneq2dv | ⊢ ( 𝜑  →  ∪  𝑗  ∈  ℕ ( 𝐴 ‘ 𝑗 )  =  ∪  𝑗  ∈  ℕ { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) | 
						
							| 274 | 96 | ffnd | ⊢ ( 𝜑  →  𝐴  Fn  ℕ ) | 
						
							| 275 |  | fniunfv | ⊢ ( 𝐴  Fn  ℕ  →  ∪  𝑗  ∈  ℕ ( 𝐴 ‘ 𝑗 )  =  ∪  ran  𝐴 ) | 
						
							| 276 | 274 275 | syl | ⊢ ( 𝜑  →  ∪  𝑗  ∈  ℕ ( 𝐴 ‘ 𝑗 )  =  ∪  ran  𝐴 ) | 
						
							| 277 | 272 273 276 | 3eqtr2rd | ⊢ ( 𝜑  →  ∪  ran  𝐴  =  ℝ ) | 
						
							| 278 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 279 | 96 149 277 8 278 | itg1climres | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) )  ⇝  ( ∫1 ‘ 𝐻 ) ) | 
						
							| 280 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 281 | 280 | mptex | ⊢ ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) )  ∈  V | 
						
							| 282 | 281 | a1i | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) )  ∈  V ) | 
						
							| 283 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴 ‘ 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 284 | 283 | eleq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 )  ↔  𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 285 | 284 | ifbid | ⊢ ( 𝑗  =  𝑘  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 )  =  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 286 | 285 | mpteq2dv | ⊢ ( 𝑗  =  𝑘  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 287 | 286 | fveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  =  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 288 |  | eqid | ⊢ ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 289 |  | fvex | ⊢ ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  ∈  V | 
						
							| 290 | 287 288 289 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ‘ 𝑘 )  =  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 291 | 290 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ‘ 𝑘 )  =  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 292 | 96 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ‘ 𝑘 )  ∈  dom  vol ) | 
						
							| 293 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 294 | 293 | i1fres | ⊢ ( ( 𝐻  ∈  dom  ∫1  ∧  ( 𝐴 ‘ 𝑘 )  ∈  dom  vol )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 295 | 8 292 294 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 296 |  | itg1cl | ⊢ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 297 | 295 296 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 298 | 291 297 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 299 | 298 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 300 | 287 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 301 |  | eqid | ⊢ ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 302 |  | ovex | ⊢ ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) )  ∈  V | 
						
							| 303 | 300 301 302 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) ‘ 𝑘 )  =  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 304 | 290 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑇  ·  ( ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ‘ 𝑘 ) )  =  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 305 | 303 304 | eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) ‘ 𝑘 )  =  ( 𝑇  ·  ( ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 306 | 305 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) ‘ 𝑘 )  =  ( 𝑇  ·  ( ( 𝑗  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 307 | 12 13 279 55 282 299 306 | climmulc2 | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) )  ⇝  ( 𝑇  ·  ( ∫1 ‘ 𝐻 ) ) ) | 
						
							| 308 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 309 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 310 | 3 308 309 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 311 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑆  ∈  ℝ ) | 
						
							| 312 |  | itg2cl | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 313 | 310 312 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 314 | 313 | fmpttd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) | 
						
							| 315 | 314 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ* ) | 
						
							| 316 |  | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  V | 
						
							| 317 | 316 | elabrex | ⊢ ( 𝑛  ∈  ℕ  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕ 𝑥  =  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } ) | 
						
							| 318 | 317 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕ 𝑥  =  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } ) | 
						
							| 319 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 320 | 319 | rnmpt | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  { 𝑥  ∣  ∃ 𝑛  ∈  ℕ 𝑥  =  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } | 
						
							| 321 | 318 320 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 322 |  | supxrub | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ*  ∧  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 323 | 315 321 322 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 324 | 323 6 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑆 ) | 
						
							| 325 |  | itg2lecl | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑆  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑆 )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 326 | 310 311 324 325 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 327 | 326 | fmpttd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 328 | 310 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 329 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 330 | 329 | feq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  ↔  ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 331 | 330 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  ↔  ∀ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 332 | 328 331 | sylib | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 333 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 334 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 335 | 334 | feq1d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ )  ↔  ( 𝐹 ‘ ( 𝑛  +  1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 336 | 335 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑛  +  1 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 337 | 332 333 336 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 338 |  | itg2le | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 339 | 310 337 4 338 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 340 | 339 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 341 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑘  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 342 |  | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  V | 
						
							| 343 | 341 319 342 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  =  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 344 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 345 |  | 2fveq3 | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 346 |  | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  V | 
						
							| 347 | 345 319 346 | fvmpt | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 348 | 344 347 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 349 | 343 348 | breq12d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ↔  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 350 | 349 | ralbiia | ⊢ ( ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ↔  ∀ 𝑘  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 351 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  =  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 352 | 351 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  =  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 353 | 341 352 | breq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ↔  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 354 | 353 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ↔  ∀ 𝑘  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 355 | 350 354 | bitr4i | ⊢ ( ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ↔  ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 356 | 340 355 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 357 | 356 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 358 | 324 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑆 ) | 
						
							| 359 | 343 | breq1d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥  ↔  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 ) ) | 
						
							| 360 | 359 | ralbiia | ⊢ ( ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 ) | 
						
							| 361 | 341 | breq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥  ↔  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 ) ) | 
						
							| 362 | 361 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 ) | 
						
							| 363 | 360 362 | bitr4i | ⊢ ( ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥  ↔  ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 364 |  | breq2 | ⊢ ( 𝑥  =  𝑆  →  ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥  ↔  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑆 ) ) | 
						
							| 365 | 364 | ralbidv | ⊢ ( 𝑥  =  𝑆  →  ( ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥  ↔  ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑆 ) ) | 
						
							| 366 | 363 365 | bitrid | ⊢ ( 𝑥  =  𝑆  →  ( ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥  ↔  ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑆 ) ) | 
						
							| 367 | 366 | rspcev | ⊢ ( ( 𝑆  ∈  ℝ  ∧  ∀ 𝑛  ∈  ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑆 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 368 | 10 358 367 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 369 | 12 13 327 357 368 | climsup | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⇝  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 370 | 327 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ ) | 
						
							| 371 | 319 313 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ℕ ) | 
						
							| 372 | 242 | a1i | ⊢ ( 𝜑  →  ℕ  ≠  ∅ ) | 
						
							| 373 | 371 372 | eqnetrd | ⊢ ( 𝜑  →  dom  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ≠  ∅ ) | 
						
							| 374 |  | dm0rn0 | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ∅ ) | 
						
							| 375 | 374 | necon3bii | ⊢ ( dom  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ≠  ∅  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ≠  ∅ ) | 
						
							| 376 | 373 375 | sylib | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ≠  ∅ ) | 
						
							| 377 | 316 319 | fnmpti | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  Fn  ℕ | 
						
							| 378 |  | breq1 | ⊢ ( 𝑧  =  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  →  ( 𝑧  ≤  𝑥  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 379 | 378 | ralrn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 380 | 377 379 | mp1i | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 381 | 380 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 382 | 368 381 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  𝑥 ) | 
						
							| 383 |  | supxrre | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ  ∧  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧  ≤  𝑥 )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 384 | 370 376 382 383 | syl3anc | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 385 | 6 384 | eqtr2id | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ ,   <  )  =  𝑆 ) | 
						
							| 386 | 369 385 | breqtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⇝  𝑆 ) | 
						
							| 387 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑇  ∈  ℝ ) | 
						
							| 388 | 96 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐴 ‘ 𝑗 )  ∈  dom  vol ) | 
						
							| 389 | 278 | i1fres | ⊢ ( ( 𝐻  ∈  dom  ∫1  ∧  ( 𝐴 ‘ 𝑗 )  ∈  dom  vol )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 390 | 8 388 389 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 391 |  | itg1cl | ⊢ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 392 | 390 391 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 393 | 387 392 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 394 | 393 | fmpttd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 395 | 394 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 396 | 327 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 397 | 329 | feq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | 
						
							| 398 | 397 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ↔  ∀ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 399 | 104 398 | sylib | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 400 | 399 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 401 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 402 | 400 308 401 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 403 | 31 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 404 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑇  ∈  ℝ ) | 
						
							| 405 | 404 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 406 |  | fvex | ⊢ ( 𝐻 ‘ 𝑥 )  ∈  V | 
						
							| 407 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 408 | 406 407 | ifex | ⊢ if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 409 | 408 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 )  ∈  V ) | 
						
							| 410 |  | fconstmpt | ⊢ ( ℝ  ×  { 𝑇 } )  =  ( 𝑥  ∈  ℝ  ↦  𝑇 ) | 
						
							| 411 | 410 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ℝ  ×  { 𝑇 } )  =  ( 𝑥  ∈  ℝ  ↦  𝑇 ) ) | 
						
							| 412 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 413 | 403 405 409 411 412 | offval2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℝ  ×  { 𝑇 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑇  ·  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 414 |  | ovif2 | ⊢ ( 𝑇  ·  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  =  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  ( 𝑇  ·  0 ) ) | 
						
							| 415 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑇  ∈  ℂ ) | 
						
							| 416 | 415 | mul01d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑇  ·  0 )  =  0 ) | 
						
							| 417 | 416 | ifeq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  ( 𝑇  ·  0 ) )  =  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) | 
						
							| 418 | 414 417 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑇  ·  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) )  =  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) | 
						
							| 419 | 418 | mpteq2dv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  ( 𝑇  ·  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) ) | 
						
							| 420 | 413 419 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℝ  ×  { 𝑇 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) ) | 
						
							| 421 | 295 404 | i1fmulc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℝ  ×  { 𝑇 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) )  ∈  dom  ∫1 ) | 
						
							| 422 | 420 421 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 423 |  | iftrue | ⊢ ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  =  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 424 | 423 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑘 ) )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  =  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 425 | 329 | fveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 426 | 425 | breq2d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 427 | 426 | rabbidv | ⊢ ( 𝑛  =  𝑘  →  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) | 
						
							| 428 | 31 | rabex | ⊢ { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) }  ∈  V | 
						
							| 429 | 427 11 428 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐴 ‘ 𝑘 )  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) | 
						
							| 430 | 429 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐴 ‘ 𝑘 )  =  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) | 
						
							| 431 | 430 | eleq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 )  ↔  𝑥  ∈  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) ) | 
						
							| 432 | 431 | biimpa | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑘 ) )  →  𝑥  ∈  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) | 
						
							| 433 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) }  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 434 | 433 | simprbi | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ℝ  ∣  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) }  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 435 | 432 434 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑘 ) )  →  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 436 | 424 435 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  ( 𝐴 ‘ 𝑘 ) )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 437 |  | iffalse | ⊢ ( ¬  𝑥  ∈  ( 𝐴 ‘ 𝑘 )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  =  0 ) | 
						
							| 438 | 437 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  ( 𝐴 ‘ 𝑘 ) )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  =  0 ) | 
						
							| 439 | 400 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 440 |  | elrege0 | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 441 | 440 | simprbi | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  →  0  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 442 | 439 441 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  0  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 443 | 442 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  ( 𝐴 ‘ 𝑘 ) )  →  0  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 444 | 438 443 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  ( 𝐴 ‘ 𝑘 ) )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 445 | 436 444 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 446 | 445 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 447 |  | ovex | ⊢ ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) )  ∈  V | 
						
							| 448 | 447 407 | ifex | ⊢ if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  ∈  V | 
						
							| 449 | 448 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  ∈  V ) | 
						
							| 450 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 451 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) ) | 
						
							| 452 | 400 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 453 | 403 449 450 451 452 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) )  ∘r   ≤  ( 𝐹 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 )  ≤  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 454 | 446 453 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) )  ∘r   ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 455 |  | itg2ub | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) )  ∈  dom  ∫1  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) )  ∘r   ≤  ( 𝐹 ‘ 𝑘 ) )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 456 | 402 422 454 455 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 457 | 303 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) ‘ 𝑘 )  =  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 458 | 295 404 | itg1mulc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( ( ℝ  ×  { 𝑇 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 459 | 420 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ∫1 ‘ ( ( ℝ  ×  { 𝑇 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) ) ) | 
						
							| 460 | 457 458 459 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) ‘ 𝑘 )  =  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 ) ,  ( 𝑇  ·  ( 𝐻 ‘ 𝑥 ) ) ,  0 ) ) ) ) | 
						
							| 461 | 343 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  =  ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 462 | 456 460 461 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( 𝑇  ·  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( 𝐴 ‘ 𝑗 ) ,  ( 𝐻 ‘ 𝑥 ) ,  0 ) ) ) ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) | 
						
							| 463 | 12 13 307 386 395 396 462 | climle | ⊢ ( 𝜑  →  ( 𝑇  ·  ( ∫1 ‘ 𝐻 ) )  ≤  𝑆 ) |