Metamath Proof Explorer


Theorem itg2monolem1

Description: Lemma for itg2mono . We show that for any constant t less than one, t x. S.1 H is less than S , and so S.1 H <_ S , which is one half of the equality in itg2mono . Consider the sequence A ( n ) = { x | t x. H <_ F ( n ) } . This is an increasing sequence of measurable sets whose union is RR , and so ` H |`A ( n ) has an integral which equals S.1 H in the limit, by itg1climres . Then by taking the limit in ` ( t x. H ) |`A ( n ) <_ F ( n ) , we get t x. S.1 H <_ S as desired. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses itg2mono.1 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
itg2mono.2 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ MblFn )
itg2mono.3 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) )
itg2mono.4 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
itg2mono.5 ( ( 𝜑𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
itg2mono.6 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ* , < )
itg2mono.7 ( 𝜑𝑇 ∈ ( 0 (,) 1 ) )
itg2mono.8 ( 𝜑𝐻 ∈ dom ∫1 )
itg2mono.9 ( 𝜑𝐻r𝐺 )
itg2mono.10 ( 𝜑𝑆 ∈ ℝ )
itg2mono.11 𝐴 = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
Assertion itg2monolem1 ( 𝜑 → ( 𝑇 · ( ∫1𝐻 ) ) ≤ 𝑆 )

Proof

Step Hyp Ref Expression
1 itg2mono.1 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
2 itg2mono.2 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ MblFn )
3 itg2mono.3 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) )
4 itg2mono.4 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
5 itg2mono.5 ( ( 𝜑𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
6 itg2mono.6 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ* , < )
7 itg2mono.7 ( 𝜑𝑇 ∈ ( 0 (,) 1 ) )
8 itg2mono.8 ( 𝜑𝐻 ∈ dom ∫1 )
9 itg2mono.9 ( 𝜑𝐻r𝐺 )
10 itg2mono.10 ( 𝜑𝑆 ∈ ℝ )
11 itg2mono.11 𝐴 = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
12 nnuz ℕ = ( ℤ ‘ 1 )
13 1zzd ( 𝜑 → 1 ∈ ℤ )
14 simpr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ )
15 readdcl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ )
16 15 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ )
17 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
18 fss ( ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹𝑛 ) : ℝ ⟶ ℝ )
19 3 17 18 sylancl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) : ℝ ⟶ ℝ )
20 0xr 0 ∈ ℝ*
21 1xr 1 ∈ ℝ*
22 elioo2 ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝑇 ∈ ( 0 (,) 1 ) ↔ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇𝑇 < 1 ) ) )
23 20 21 22 mp2an ( 𝑇 ∈ ( 0 (,) 1 ) ↔ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇𝑇 < 1 ) )
24 7 23 sylib ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇𝑇 < 1 ) )
25 24 simp1d ( 𝜑𝑇 ∈ ℝ )
26 25 renegcld ( 𝜑 → - 𝑇 ∈ ℝ )
27 8 26 i1fmulc ( 𝜑 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 )
28 27 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 )
29 i1ff ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) : ℝ ⟶ ℝ )
30 28 29 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) : ℝ ⟶ ℝ )
31 reex ℝ ∈ V
32 31 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ℝ ∈ V )
33 inidm ( ℝ ∩ ℝ ) = ℝ
34 16 19 30 32 32 33 off ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ )
35 34 adantr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ )
36 35 ffnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) Fn ℝ )
37 elpreima ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) Fn ℝ → ( 𝑥 ∈ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) ) )
38 36 37 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) ) )
39 14 38 mpbirand ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) )
40 elioomnf ( 0 ∈ ℝ* → ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) )
41 20 40 ax-mp ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) )
42 34 ffvelrnda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ )
43 42 biantrurd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) )
44 41 43 bitr4id ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) )
45 3 ffnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) Fn ℝ )
46 30 ffnd ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) Fn ℝ )
47 eqidd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
48 26 adantr ( ( 𝜑𝑛 ∈ ℕ ) → - 𝑇 ∈ ℝ )
49 i1ff ( 𝐻 ∈ dom ∫1𝐻 : ℝ ⟶ ℝ )
50 8 49 syl ( 𝜑𝐻 : ℝ ⟶ ℝ )
51 50 ffnd ( 𝜑𝐻 Fn ℝ )
52 51 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐻 Fn ℝ )
53 eqidd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻𝑥 ) = ( 𝐻𝑥 ) )
54 32 48 52 53 ofc1 ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ‘ 𝑥 ) = ( - 𝑇 · ( 𝐻𝑥 ) ) )
55 25 recnd ( 𝜑𝑇 ∈ ℂ )
56 55 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ )
57 50 ffvelrnda ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐻𝑥 ) ∈ ℝ )
58 57 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻𝑥 ) ∈ ℝ )
59 58 recnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻𝑥 ) ∈ ℂ )
60 56 59 mulneg1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( - 𝑇 · ( 𝐻𝑥 ) ) = - ( 𝑇 · ( 𝐻𝑥 ) ) )
61 54 60 eqtrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ‘ 𝑥 ) = - ( 𝑇 · ( 𝐻𝑥 ) ) )
62 45 46 32 32 33 47 61 ofval ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) = ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) + - ( 𝑇 · ( 𝐻𝑥 ) ) ) )
63 19 ffvelrnda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
64 63 recnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℂ )
65 25 adantr ( ( 𝜑𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ )
66 65 57 remulcld ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ )
67 66 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ )
68 67 recnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℂ )
69 64 68 negsubd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) + - ( 𝑇 · ( 𝐻𝑥 ) ) ) = ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻𝑥 ) ) ) )
70 62 69 eqtrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) = ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻𝑥 ) ) ) )
71 70 breq1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻𝑥 ) ) ) < 0 ) )
72 0red ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ )
73 63 67 72 ltsubaddd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻𝑥 ) ) ) < 0 ↔ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < ( 0 + ( 𝑇 · ( 𝐻𝑥 ) ) ) ) )
74 68 addid2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 0 + ( 𝑇 · ( 𝐻𝑥 ) ) ) = ( 𝑇 · ( 𝐻𝑥 ) ) )
75 74 breq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) < ( 0 + ( 𝑇 · ( 𝐻𝑥 ) ) ) ↔ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻𝑥 ) ) ) )
76 71 73 75 3bitrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻𝑥 ) ) ) )
77 39 44 76 3bitrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻𝑥 ) ) ) )
78 77 notbid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ¬ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻𝑥 ) ) ) )
79 eldif ( 𝑥 ∈ ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) )
80 79 baib ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ¬ 𝑥 ∈ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) )
81 80 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ¬ 𝑥 ∈ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) )
82 67 63 lenltd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ¬ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻𝑥 ) ) ) )
83 78 81 82 3bitr4d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
84 83 rabbi2dva ( ( 𝜑𝑛 ∈ ℕ ) → ( ℝ ∩ ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
85 rembl ℝ ∈ dom vol
86 i1fmbf ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ MblFn )
87 28 86 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ MblFn )
88 2 87 mbfadd ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ∈ MblFn )
89 mbfima ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ∈ MblFn ∧ ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ ) → ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol )
90 88 34 89 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol )
91 cmmbl ( ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol → ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol )
92 90 91 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol )
93 inmbl ( ( ℝ ∈ dom vol ∧ ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol ) → ( ℝ ∩ ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) ∈ dom vol )
94 85 92 93 sylancr ( ( 𝜑𝑛 ∈ ℕ ) → ( ℝ ∩ ( ℝ ∖ ( ( ( 𝐹𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) ∈ dom vol )
95 84 94 eqeltrrd ( ( 𝜑𝑛 ∈ ℕ ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ∈ dom vol )
96 95 11 fmptd ( 𝜑𝐴 : ℕ ⟶ dom vol )
97 4 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
98 fveq2 ( 𝑛 = 𝑗 → ( 𝐹𝑛 ) = ( 𝐹𝑗 ) )
99 fvoveq1 ( 𝑛 = 𝑗 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
100 98 99 breq12d ( 𝑛 = 𝑗 → ( ( 𝐹𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐹𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) )
101 100 cbvralvw ( ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
102 97 101 sylib ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
103 102 r19.21bi ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
104 3 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) )
105 98 feq1d ( 𝑛 = 𝑗 → ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) )
106 105 cbvralvw ( ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) )
107 104 106 sylib ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) )
108 107 r19.21bi ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) )
109 108 ffnd ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) Fn ℝ )
110 peano2nn ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ )
111 fveq2 ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
112 111 feq1d ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) )
113 112 rspccva ( ( ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑗 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) )
114 104 110 113 syl2an ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) )
115 114 ffnd ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) Fn ℝ )
116 31 a1i ( ( 𝜑𝑗 ∈ ℕ ) → ℝ ∈ V )
117 eqidd ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑗 ) ‘ 𝑥 ) = ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
118 eqidd ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) )
119 109 115 116 116 33 117 118 ofrfval ( ( 𝜑𝑗 ∈ ℕ ) → ( ( 𝐹𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) )
120 103 119 mpbid ( ( 𝜑𝑗 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) )
121 120 r19.21bi ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) )
122 25 ad2antrr ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ )
123 50 adantr ( ( 𝜑𝑗 ∈ ℕ ) → 𝐻 : ℝ ⟶ ℝ )
124 123 ffvelrnda ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻𝑥 ) ∈ ℝ )
125 122 124 remulcld ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ )
126 fss ( ( ( 𝐹𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹𝑗 ) : ℝ ⟶ ℝ )
127 108 17 126 sylancl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) : ℝ ⟶ ℝ )
128 127 ffvelrnda ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ )
129 fss ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ℝ )
130 114 17 129 sylancl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ℝ )
131 130 ffvelrnda ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ∈ ℝ )
132 letr ( ( ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ ∧ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ∈ ℝ ) → ( ( ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∧ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) )
133 125 128 131 132 syl3anc ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∧ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) )
134 121 133 mpan2d ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) )
135 134 ss2rabdv ( ( 𝜑𝑗 ∈ ℕ ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } ⊆ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } )
136 98 fveq1d ( 𝑛 = 𝑗 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
137 136 breq2d ( 𝑛 = 𝑗 → ( ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
138 137 rabbidv ( 𝑛 = 𝑗 → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } )
139 31 rabex { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } ∈ V
140 138 11 139 fvmpt ( 𝑗 ∈ ℕ → ( 𝐴𝑗 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } )
141 140 adantl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐴𝑗 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } )
142 110 adantl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ )
143 111 fveq1d ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) )
144 143 breq2d ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) )
145 144 rabbidv ( 𝑛 = ( 𝑗 + 1 ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } )
146 31 rabex { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ∈ V
147 145 11 146 fvmpt ( ( 𝑗 + 1 ) ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } )
148 142 147 syl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } )
149 135 141 148 3sstr4d ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐴𝑗 ) ⊆ ( 𝐴 ‘ ( 𝑗 + 1 ) ) )
150 66 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ )
151 57 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝐻𝑥 ) ∈ ℝ )
152 63 an32s ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
153 152 fmpttd ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℝ )
154 153 frnd ( ( 𝜑𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ )
155 1nn 1 ∈ ℕ
156 eqid ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
157 156 152 dmmptd ( ( 𝜑𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ℕ )
158 155 157 eleqtrrid ( ( 𝜑𝑥 ∈ ℝ ) → 1 ∈ dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
159 158 ne0d ( ( 𝜑𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ≠ ∅ )
160 dm0rn0 ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ∅ )
161 160 necon3bii ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ≠ ∅ )
162 159 161 sylib ( ( 𝜑𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ≠ ∅ )
163 153 ffnd ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) Fn ℕ )
164 breq1 ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) → ( 𝑧𝑦 ↔ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) )
165 164 ralrn ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) 𝑧𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) )
166 163 165 syl ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) 𝑧𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) )
167 fveq2 ( 𝑛 = 𝑚 → ( 𝐹𝑛 ) = ( 𝐹𝑚 ) )
168 167 fveq1d ( 𝑛 = 𝑚 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑥 ) )
169 fvex ( ( 𝐹𝑚 ) ‘ 𝑥 ) ∈ V
170 168 156 169 fvmpt ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹𝑚 ) ‘ 𝑥 ) )
171 170 breq1d ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) )
172 171 ralbiia ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ≤ 𝑦 )
173 168 breq1d ( 𝑛 = 𝑚 → ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) )
174 173 cbvralvw ( ∀ 𝑛 ∈ ℕ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ≤ 𝑦 )
175 172 174 bitr4i ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
176 166 175 bitrdi ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) 𝑧𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) )
177 176 rexbidv ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) 𝑧𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) )
178 5 177 mpbird ( ( 𝜑𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) 𝑧𝑦 )
179 154 162 178 suprcld ( ( 𝜑𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ )
180 179 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ )
181 24 simp3d ( 𝜑𝑇 < 1 )
182 181 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → 𝑇 < 1 )
183 25 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → 𝑇 ∈ ℝ )
184 1red ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → 1 ∈ ℝ )
185 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → 0 < ( 𝐻𝑥 ) )
186 ltmul1 ( ( 𝑇 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝐻𝑥 ) ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝑇 < 1 ↔ ( 𝑇 · ( 𝐻𝑥 ) ) < ( 1 · ( 𝐻𝑥 ) ) ) )
187 183 184 151 185 186 syl112anc ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝑇 < 1 ↔ ( 𝑇 · ( 𝐻𝑥 ) ) < ( 1 · ( 𝐻𝑥 ) ) ) )
188 182 187 mpbid ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) < ( 1 · ( 𝐻𝑥 ) ) )
189 151 recnd ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝐻𝑥 ) ∈ ℂ )
190 189 mulid2d ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 1 · ( 𝐻𝑥 ) ) = ( 𝐻𝑥 ) )
191 188 190 breqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) < ( 𝐻𝑥 ) )
192 179 1 fmptd ( 𝜑𝐺 : ℝ ⟶ ℝ )
193 192 ffnd ( 𝜑𝐺 Fn ℝ )
194 31 a1i ( 𝜑 → ℝ ∈ V )
195 eqidd ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝐻𝑦 ) = ( 𝐻𝑦 ) )
196 fveq2 ( 𝑥 = 𝑦 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑦 ) )
197 196 mpteq2dv ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) )
198 197 rneqd ( 𝑥 = 𝑦 → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) )
199 198 supeq1d ( 𝑥 = 𝑦 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) )
200 ltso < Or ℝ
201 200 supex sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ∈ V
202 199 1 201 fvmpt ( 𝑦 ∈ ℝ → ( 𝐺𝑦 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) )
203 202 adantl ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝐺𝑦 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) )
204 51 193 194 194 33 195 203 ofrfval ( 𝜑 → ( 𝐻r𝐺 ↔ ∀ 𝑦 ∈ ℝ ( 𝐻𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) )
205 9 204 mpbid ( 𝜑 → ∀ 𝑦 ∈ ℝ ( 𝐻𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) )
206 fveq2 ( 𝑥 = 𝑦 → ( 𝐻𝑥 ) = ( 𝐻𝑦 ) )
207 206 199 breq12d ( 𝑥 = 𝑦 → ( ( 𝐻𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ( 𝐻𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) )
208 207 cbvralvw ( ∀ 𝑥 ∈ ℝ ( 𝐻𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∀ 𝑦 ∈ ℝ ( 𝐻𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) )
209 205 208 sylibr ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝐻𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
210 209 r19.21bi ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐻𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
211 210 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝐻𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
212 150 151 180 191 211 ltletrd ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
213 154 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ )
214 162 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ≠ ∅ )
215 178 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) 𝑧𝑦 )
216 suprlub ( ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) 𝑧𝑦 ) ∧ ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ ) → ( ( 𝑇 · ( 𝐻𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻𝑥 ) ) < 𝑤 ) )
217 213 214 215 150 216 syl31anc ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( ( 𝑇 · ( 𝐻𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻𝑥 ) ) < 𝑤 ) )
218 212 217 mpbid ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻𝑥 ) ) < 𝑤 )
219 163 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) Fn ℕ )
220 breq2 ( 𝑤 = ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) → ( ( 𝑇 · ( 𝐻𝑥 ) ) < 𝑤 ↔ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) )
221 220 rexrn ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) Fn ℕ → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) )
222 219 221 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) )
223 fvex ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ V
224 136 156 223 fvmpt ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
225 224 breq2d ( 𝑗 ∈ ℕ → ( ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ↔ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
226 225 rexbiia ( ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
227 222 226 bitrdi ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
228 218 227 mpbid ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
229 183 151 remulcld ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ )
230 108 adantlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) )
231 simplr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑥 ∈ ℝ )
232 230 231 ffvelrnd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) )
233 elrege0 ( ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
234 232 233 sylib ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
235 234 simpld ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ )
236 235 adantlrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ )
237 ltle ( ( ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ ∧ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝐹𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
238 229 236 237 syl2an2r ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝐹𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
239 238 reximdva ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ( ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) < ( ( 𝐹𝑗 ) ‘ 𝑥 ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
240 228 239 mpd ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻𝑥 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
241 240 anassrs ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 0 < ( 𝐻𝑥 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
242 155 ne0ii ℕ ≠ ∅
243 66 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ )
244 243 adantr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻𝑥 ) ) ∈ ℝ )
245 0red ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 ∈ ℝ )
246 234 adantlrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
247 246 simpld ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹𝑗 ) ‘ 𝑥 ) ∈ ℝ )
248 simplrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐻𝑥 ) ≤ 0 )
249 57 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) → ( 𝐻𝑥 ) ∈ ℝ )
250 249 adantr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐻𝑥 ) ∈ ℝ )
251 25 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℝ )
252 24 simp2d ( 𝜑 → 0 < 𝑇 )
253 252 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 < 𝑇 )
254 lemul2 ( ( ( 𝐻𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) → ( ( 𝐻𝑥 ) ≤ 0 ↔ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( 𝑇 · 0 ) ) )
255 250 245 251 253 254 syl112anc ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻𝑥 ) ≤ 0 ↔ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( 𝑇 · 0 ) ) )
256 248 255 mpbid ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( 𝑇 · 0 ) )
257 251 recnd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℂ )
258 257 mul01d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · 0 ) = 0 )
259 256 258 breqtrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ 0 )
260 246 simprd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
261 244 245 247 259 260 letrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
262 261 ralrimiva ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) → ∀ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
263 r19.2z ( ( ℕ ≠ ∅ ∧ ∀ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
264 242 262 263 sylancr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻𝑥 ) ≤ 0 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
265 264 anassrs ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝐻𝑥 ) ≤ 0 ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
266 0red ( ( 𝜑𝑥 ∈ ℝ ) → 0 ∈ ℝ )
267 241 265 266 57 ltlecasei ( ( 𝜑𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
268 267 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
269 rabid2 ( ℝ = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
270 268 269 sylibr ( 𝜑 → ℝ = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } )
271 iunrab 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) }
272 270 271 eqtr4di ( 𝜑 → ℝ = 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } )
273 141 iuneq2dv ( 𝜑 𝑗 ∈ ℕ ( 𝐴𝑗 ) = 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑗 ) ‘ 𝑥 ) } )
274 96 ffnd ( 𝜑𝐴 Fn ℕ )
275 fniunfv ( 𝐴 Fn ℕ → 𝑗 ∈ ℕ ( 𝐴𝑗 ) = ran 𝐴 )
276 274 275 syl ( 𝜑 𝑗 ∈ ℕ ( 𝐴𝑗 ) = ran 𝐴 )
277 272 273 276 3eqtr2rd ( 𝜑 ran 𝐴 = ℝ )
278 eqid ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) )
279 96 149 277 8 278 itg1climres ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ⇝ ( ∫1𝐻 ) )
280 nnex ℕ ∈ V
281 280 mptex ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ∈ V
282 281 a1i ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ∈ V )
283 fveq2 ( 𝑗 = 𝑘 → ( 𝐴𝑗 ) = ( 𝐴𝑘 ) )
284 283 eleq2d ( 𝑗 = 𝑘 → ( 𝑥 ∈ ( 𝐴𝑗 ) ↔ 𝑥 ∈ ( 𝐴𝑘 ) ) )
285 284 ifbid ( 𝑗 = 𝑘 → if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) = if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) )
286 285 mpteq2dv ( 𝑗 = 𝑘 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) )
287 286 fveq2d ( 𝑗 = 𝑘 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) )
288 eqid ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) )
289 fvex ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ∈ V
290 287 288 289 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) )
291 290 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) )
292 96 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐴𝑘 ) ∈ dom vol )
293 eqid ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) )
294 293 i1fres ( ( 𝐻 ∈ dom ∫1 ∧ ( 𝐴𝑘 ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ∈ dom ∫1 )
295 8 292 294 syl2an2r ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ∈ dom ∫1 )
296 itg1cl ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ∈ ℝ )
297 295 296 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ∈ ℝ )
298 291 297 eqeltrd ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ∈ ℝ )
299 298 recnd ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ∈ ℂ )
300 287 oveq2d ( 𝑗 = 𝑘 → ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) )
301 eqid ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) )
302 ovex ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ∈ V
303 300 301 302 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) )
304 290 oveq2d ( 𝑘 ∈ ℕ → ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) )
305 303 304 eqtr4d ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) )
306 305 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) )
307 12 13 279 55 282 299 306 climmulc2 ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ⇝ ( 𝑇 · ( ∫1𝐻 ) ) )
308 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
309 fss ( ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) )
310 3 308 309 sylancl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) )
311 10 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑆 ∈ ℝ )
312 itg2cl ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ ℝ* )
313 310 312 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ ℝ* )
314 313 fmpttd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) : ℕ ⟶ ℝ* )
315 314 frnd ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ⊆ ℝ* )
316 fvex ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ V
317 316 elabrex ( 𝑛 ∈ ℕ → ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹𝑛 ) ) } )
318 317 adantl ( ( 𝜑𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹𝑛 ) ) } )
319 eqid ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) )
320 319 rnmpt ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) = { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹𝑛 ) ) }
321 318 320 eleqtrrdi ( ( 𝜑𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) )
322 supxrub ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ* , < ) )
323 315 321 322 syl2an2r ( ( 𝜑𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ* , < ) )
324 323 6 breqtrrdi ( ( 𝜑𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑆 )
325 itg2lecl ( ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑆 ∈ ℝ ∧ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑆 ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
326 310 311 324 325 syl3anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
327 326 fmpttd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) : ℕ ⟶ ℝ )
328 310 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) )
329 fveq2 ( 𝑛 = 𝑘 → ( 𝐹𝑛 ) = ( 𝐹𝑘 ) )
330 329 feq1d ( 𝑛 = 𝑘 → ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) )
331 330 cbvralvw ( ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ∀ 𝑘 ∈ ℕ ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) )
332 328 331 sylib ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) )
333 peano2nn ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ )
334 fveq2 ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
335 334 feq1d ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) )
336 335 rspccva ( ( ∀ 𝑘 ∈ ℕ ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) )
337 332 333 336 syl2an ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) )
338 itg2le ( ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐹𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
339 310 337 4 338 syl3anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
340 339 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
341 2fveq3 ( 𝑛 = 𝑘 → ( ∫2 ‘ ( 𝐹𝑛 ) ) = ( ∫2 ‘ ( 𝐹𝑘 ) ) )
342 fvex ( ∫2 ‘ ( 𝐹𝑘 ) ) ∈ V
343 341 319 342 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) = ( ∫2 ‘ ( 𝐹𝑘 ) ) )
344 peano2nn ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ )
345 2fveq3 ( 𝑛 = ( 𝑘 + 1 ) → ( ∫2 ‘ ( 𝐹𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
346 fvex ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ V
347 345 319 346 fvmpt ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
348 344 347 syl ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
349 343 348 breq12d ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ( ∫2 ‘ ( 𝐹𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) )
350 349 ralbiia ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
351 fvoveq1 ( 𝑛 = 𝑘 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
352 351 fveq2d ( 𝑛 = 𝑘 → ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
353 341 352 breq12d ( 𝑛 = 𝑘 → ( ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ∫2 ‘ ( 𝐹𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) )
354 353 cbvralvw ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
355 350 354 bitr4i ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
356 340 355 sylibr ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) )
357 356 r19.21bi ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) )
358 324 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑆 )
359 343 breq1d ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹𝑘 ) ) ≤ 𝑥 ) )
360 359 ralbiia ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑘 ) ) ≤ 𝑥 )
361 341 breq1d ( 𝑛 = 𝑘 → ( ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹𝑘 ) ) ≤ 𝑥 ) )
362 361 cbvralvw ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑘 ) ) ≤ 𝑥 )
363 360 362 bitr4i ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑥 )
364 breq2 ( 𝑥 = 𝑆 → ( ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑆 ) )
365 364 ralbidv ( 𝑥 = 𝑆 → ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑆 ) )
366 363 365 syl5bb ( 𝑥 = 𝑆 → ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑆 ) )
367 366 rspcev ( ( 𝑆 ∈ ℝ ∧ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹𝑛 ) ) ≤ 𝑆 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 )
368 10 358 367 syl2anc ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 )
369 12 13 327 357 368 climsup ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ⇝ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ , < ) )
370 327 frnd ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ⊆ ℝ )
371 319 313 dmmptd ( 𝜑 → dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) = ℕ )
372 242 a1i ( 𝜑 → ℕ ≠ ∅ )
373 371 372 eqnetrd ( 𝜑 → dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ≠ ∅ )
374 dm0rn0 ( dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) = ∅ )
375 374 necon3bii ( dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ≠ ∅ )
376 373 375 sylib ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ≠ ∅ )
377 316 319 fnmpti ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) Fn ℕ
378 breq1 ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) → ( 𝑧𝑥 ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) )
379 378 ralrn ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) 𝑧𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) )
380 377 379 mp1i ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) 𝑧𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) )
381 380 rexbidv ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) 𝑧𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) )
382 368 381 mpbird ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) 𝑧𝑥 )
383 supxrre ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) 𝑧𝑥 ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ , < ) )
384 370 376 382 383 syl3anc ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ , < ) )
385 6 384 eqtr2id ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) , ℝ , < ) = 𝑆 )
386 369 385 breqtrd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ⇝ 𝑆 )
387 25 adantr ( ( 𝜑𝑗 ∈ ℕ ) → 𝑇 ∈ ℝ )
388 96 ffvelrnda ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐴𝑗 ) ∈ dom vol )
389 278 i1fres ( ( 𝐻 ∈ dom ∫1 ∧ ( 𝐴𝑗 ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ∈ dom ∫1 )
390 8 388 389 syl2an2r ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ∈ dom ∫1 )
391 itg1cl ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ∈ ℝ )
392 390 391 syl ( ( 𝜑𝑗 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ∈ ℝ )
393 387 392 remulcld ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ∈ ℝ )
394 393 fmpttd ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) : ℕ ⟶ ℝ )
395 394 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) ∈ ℝ )
396 327 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) ∈ ℝ )
397 329 feq1d ( 𝑛 = 𝑘 → ( ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) )
398 397 cbvralvw ( ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑘 ∈ ℕ ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) )
399 104 398 sylib ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) )
400 399 r19.21bi ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) )
401 fss ( ( ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) )
402 400 308 401 sylancl ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) )
403 31 a1i ( ( 𝜑𝑘 ∈ ℕ ) → ℝ ∈ V )
404 25 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑇 ∈ ℝ )
405 404 adantr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ )
406 fvex ( 𝐻𝑥 ) ∈ V
407 c0ex 0 ∈ V
408 406 407 ifex if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ∈ V
409 408 a1i ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ∈ V )
410 fconstmpt ( ℝ × { 𝑇 } ) = ( 𝑥 ∈ ℝ ↦ 𝑇 )
411 410 a1i ( ( 𝜑𝑘 ∈ ℕ ) → ( ℝ × { 𝑇 } ) = ( 𝑥 ∈ ℝ ↦ 𝑇 ) )
412 eqidd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) )
413 403 405 409 411 412 offval2 ( ( 𝜑𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑇 · if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) )
414 ovif2 ( 𝑇 · if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) = if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , ( 𝑇 · 0 ) )
415 55 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑇 ∈ ℂ )
416 415 mul01d ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑇 · 0 ) = 0 )
417 416 ifeq2d ( ( 𝜑𝑘 ∈ ℕ ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , ( 𝑇 · 0 ) ) = if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) )
418 414 417 syl5eq ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑇 · if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) = if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) )
419 418 mpteq2dv ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ ( 𝑇 · if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) )
420 413 419 eqtrd ( ( 𝜑𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) )
421 295 404 i1fmulc ( ( 𝜑𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ∈ dom ∫1 )
422 420 421 eqeltrrd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ∈ dom ∫1 )
423 iftrue ( 𝑥 ∈ ( 𝐴𝑘 ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) = ( 𝑇 · ( 𝐻𝑥 ) ) )
424 423 adantl ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) = ( 𝑇 · ( 𝐻𝑥 ) ) )
425 329 fveq1d ( 𝑛 = 𝑘 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
426 425 breq2d ( 𝑛 = 𝑘 → ( ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) ) )
427 426 rabbidv ( 𝑛 = 𝑘 → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) } )
428 31 rabex { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) } ∈ V
429 427 11 428 fvmpt ( 𝑘 ∈ ℕ → ( 𝐴𝑘 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) } )
430 429 ad2antlr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴𝑘 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) } )
431 430 eleq2d ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴𝑘 ) ↔ 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) } ) )
432 431 biimpa ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴𝑘 ) ) → 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) } )
433 rabid ( 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) } ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) ) )
434 433 simprbi ( 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) } → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
435 432 434 syl ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴𝑘 ) ) → ( 𝑇 · ( 𝐻𝑥 ) ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
436 424 435 eqbrtrd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
437 iffalse ( ¬ 𝑥 ∈ ( 𝐴𝑘 ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) = 0 )
438 437 adantl ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) = 0 )
439 400 ffvelrnda ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) )
440 elrege0 ( ( ( 𝐹𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐹𝑘 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) ) )
441 440 simprbi ( ( ( 𝐹𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
442 439 441 syl ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
443 442 adantr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴𝑘 ) ) → 0 ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
444 438 443 eqbrtrd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
445 436 444 pm2.61dan ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
446 445 ralrimiva ( ( 𝜑𝑘 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) )
447 ovex ( 𝑇 · ( 𝐻𝑥 ) ) ∈ V
448 447 407 ifex if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ∈ V
449 448 a1i ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ∈ V )
450 fvexd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑘 ) ‘ 𝑥 ) ∈ V )
451 eqidd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) )
452 400 feqmptd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹𝑘 ) ‘ 𝑥 ) ) )
453 403 449 450 451 452 ofrfval2 ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ≤ ( ( 𝐹𝑘 ) ‘ 𝑥 ) ) )
454 446 453 mpbird ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹𝑘 ) )
455 itg2ub ( ( ( 𝐹𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹𝑘 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝐹𝑘 ) ) )
456 402 422 454 455 syl3anc ( ( 𝜑𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝐹𝑘 ) ) )
457 303 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) )
458 295 404 itg1mulc ( ( 𝜑𝑘 ∈ ℕ ) → ( ∫1 ‘ ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) )
459 420 fveq2d ( ( 𝜑𝑘 ∈ ℕ ) → ( ∫1 ‘ ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ) )
460 457 458 459 3eqtr2d ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑘 ) , ( 𝑇 · ( 𝐻𝑥 ) ) , 0 ) ) ) )
461 343 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) = ( ∫2 ‘ ( 𝐹𝑘 ) ) )
462 456 460 461 3brtr4d ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴𝑗 ) , ( 𝐻𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹𝑛 ) ) ) ‘ 𝑘 ) )
463 12 13 307 386 395 396 462 climle ( 𝜑 → ( 𝑇 · ( ∫1𝐻 ) ) ≤ 𝑆 )