| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mono.1 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 2 |  | itg2mono.2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  MblFn ) | 
						
							| 3 |  | itg2mono.3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 4 |  | itg2mono.4 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 5 |  | itg2mono.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 6 |  | itg2mono.6 | ⊢ 𝑆  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 7 |  | itg2monolem2.7 | ⊢ ( 𝜑  →  𝑃  ∈  dom  ∫1 ) | 
						
							| 8 |  | itg2monolem2.8 | ⊢ ( 𝜑  →  𝑃  ∘r   ≤  𝐺 ) | 
						
							| 9 |  | itg2monolem2.9 | ⊢ ( 𝜑  →  ¬  ( ∫1 ‘ 𝑃 )  ≤  𝑆 ) | 
						
							| 10 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 11 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 12 | 3 10 11 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 13 |  | itg2cl | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 15 | 14 | fmpttd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) | 
						
							| 16 | 15 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ* ) | 
						
							| 17 |  | supxrcl | ⊢ ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ*  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 19 | 6 18 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ* ) | 
						
							| 20 |  | itg1cl | ⊢ ( 𝑃  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 21 | 7 20 | syl | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 22 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  -∞  ∈  ℝ* ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 25 | 24 | feq1d | ⊢ ( 𝑛  =  1  →  ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  ↔  ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 26 | 12 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 27 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 29 | 25 26 28 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 30 |  | itg2cl | ⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ℝ* ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ℝ* ) | 
						
							| 32 |  | itg2ge0 | ⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ )  →  0  ≤  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 33 | 29 32 | syl | ⊢ ( 𝜑  →  0  ≤  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 34 |  | mnflt0 | ⊢ -∞  <  0 | 
						
							| 35 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 36 |  | xrltletr | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ*  ∧  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ℝ* )  →  ( ( -∞  <  0  ∧  0  ≤  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) )  →  -∞  <  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 37 | 22 35 31 36 | mp3an12i | ⊢ ( 𝜑  →  ( ( -∞  <  0  ∧  0  ≤  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) )  →  -∞  <  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 38 | 34 37 | mpani | ⊢ ( 𝜑  →  ( 0  ≤  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  →  -∞  <  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 39 | 33 38 | mpd | ⊢ ( 𝜑  →  -∞  <  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 40 |  | 2fveq3 | ⊢ ( 𝑛  =  1  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 42 |  | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  V | 
						
							| 43 | 40 41 42 | fvmpt | ⊢ ( 1  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 )  =  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 44 | 27 43 | ax-mp | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 )  =  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) | 
						
							| 45 | 15 | ffnd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  Fn  ℕ ) | 
						
							| 46 |  | fnfvelrn | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  Fn  ℕ  ∧  1  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 47 | 45 27 46 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 48 | 44 47 | eqeltrrid | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 49 |  | supxrub | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ*  ∧  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 50 | 16 48 49 | syl2anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 51 | 50 6 | breqtrrdi | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ≤  𝑆 ) | 
						
							| 52 | 23 31 19 39 51 | xrltletrd | ⊢ ( 𝜑  →  -∞  <  𝑆 ) | 
						
							| 53 | 21 | rexrd | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝑃 )  ∈  ℝ* ) | 
						
							| 54 |  | xrltnle | ⊢ ( ( 𝑆  ∈  ℝ*  ∧  ( ∫1 ‘ 𝑃 )  ∈  ℝ* )  →  ( 𝑆  <  ( ∫1 ‘ 𝑃 )  ↔  ¬  ( ∫1 ‘ 𝑃 )  ≤  𝑆 ) ) | 
						
							| 55 | 19 53 54 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  <  ( ∫1 ‘ 𝑃 )  ↔  ¬  ( ∫1 ‘ 𝑃 )  ≤  𝑆 ) ) | 
						
							| 56 | 9 55 | mpbird | ⊢ ( 𝜑  →  𝑆  <  ( ∫1 ‘ 𝑃 ) ) | 
						
							| 57 | 19 53 56 | xrltled | ⊢ ( 𝜑  →  𝑆  ≤  ( ∫1 ‘ 𝑃 ) ) | 
						
							| 58 |  | xrre | ⊢ ( ( ( 𝑆  ∈  ℝ*  ∧  ( ∫1 ‘ 𝑃 )  ∈  ℝ )  ∧  ( -∞  <  𝑆  ∧  𝑆  ≤  ( ∫1 ‘ 𝑃 ) ) )  →  𝑆  ∈  ℝ ) | 
						
							| 59 | 19 21 52 57 58 | syl22anc | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) |