| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mono.1 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 2 |  | itg2mono.2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  MblFn ) | 
						
							| 3 |  | itg2mono.3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 4 |  | itg2mono.4 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 5 |  | itg2mono.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 6 |  | itg2mono.6 | ⊢ 𝑆  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 7 |  | itg2monolem2.7 | ⊢ ( 𝜑  →  𝑃  ∈  dom  ∫1 ) | 
						
							| 8 |  | itg2monolem2.8 | ⊢ ( 𝜑  →  𝑃  ∘r   ≤  𝐺 ) | 
						
							| 9 |  | itg2monolem2.9 | ⊢ ( 𝜑  →  ¬  ( ∫1 ‘ 𝑃 )  ≤  𝑆 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | itg2monolem2 | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑆  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑆  ∈  ℂ ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑃  ∈  dom  ∫1 ) | 
						
							| 14 |  | itg1cl | ⊢ ( 𝑃  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ∫1 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 16 | 15 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ∫1 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑡  ∈  ℝ+ ) | 
						
							| 18 | 17 | rpred | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑡  ∈  ℝ ) | 
						
							| 19 | 11 18 | readdcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 𝑆  +  𝑡 )  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 𝑆  +  𝑡 )  ∈  ℂ ) | 
						
							| 21 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  0  ∈  ℝ ) | 
						
							| 22 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 25 | 24 | feq1d | ⊢ ( 𝑛  =  1  →  ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  ↔  ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 26 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 27 |  | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 28 | 3 26 27 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 30 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 32 | 25 29 31 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 33 |  | itg2cl | ⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ℝ* ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ℝ* ) | 
						
							| 35 |  | itg2cl | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 36 | 28 35 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 37 | 36 | fmpttd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) | 
						
							| 38 | 37 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ* ) | 
						
							| 39 |  | supxrcl | ⊢ ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ*  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 41 | 6 40 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ* ) | 
						
							| 42 |  | itg2ge0 | ⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ )  →  0  ≤  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 43 | 32 42 | syl | ⊢ ( 𝜑  →  0  ≤  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 44 |  | 2fveq3 | ⊢ ( 𝑛  =  1  →  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 46 |  | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  V | 
						
							| 47 | 44 45 46 | fvmpt | ⊢ ( 1  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 )  =  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 48 | 30 47 | ax-mp | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 )  =  ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) | 
						
							| 49 | 37 | ffnd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  Fn  ℕ ) | 
						
							| 50 |  | fnfvelrn | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  Fn  ℕ  ∧  1  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 51 | 49 30 50 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 52 | 48 51 | eqeltrrid | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 53 |  | supxrub | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⊆  ℝ*  ∧  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 54 | 38 52 53 | syl2anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 55 | 54 6 | breqtrrdi | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝐹 ‘ 1 ) )  ≤  𝑆 ) | 
						
							| 56 | 23 34 41 43 55 | xrletrd | ⊢ ( 𝜑  →  0  ≤  𝑆 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  0  ≤  𝑆 ) | 
						
							| 58 | 11 17 | ltaddrpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑆  <  ( 𝑆  +  𝑡 ) ) | 
						
							| 59 | 21 11 19 57 58 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  0  <  ( 𝑆  +  𝑡 ) ) | 
						
							| 60 | 59 | gt0ne0d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 𝑆  +  𝑡 )  ≠  0 ) | 
						
							| 61 | 12 16 20 60 | div23d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  /  ( 𝑆  +  𝑡 ) )  =  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ·  ( ∫1 ‘ 𝑃 ) ) ) | 
						
							| 62 | 11 19 60 | redivcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ∈  ℝ ) | 
						
							| 63 | 62 15 | remulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ·  ( ∫1 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 64 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 65 |  | ifcl | ⊢ ( ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ∈  ℝ  ∧  ( 1  /  2 )  ∈  ℝ )  →  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 66 | 62 64 65 | sylancl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 67 | 66 15 | remulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( ∫1 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 68 |  | max2 | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ∈  ℝ )  →  ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ≤  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) ) ) | 
						
							| 69 | 64 62 68 | sylancr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ≤  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) ) ) | 
						
							| 70 | 7 14 | syl | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 71 | 70 | rexrd | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝑃 )  ∈  ℝ* ) | 
						
							| 72 |  | xrltnle | ⊢ ( ( 𝑆  ∈  ℝ*  ∧  ( ∫1 ‘ 𝑃 )  ∈  ℝ* )  →  ( 𝑆  <  ( ∫1 ‘ 𝑃 )  ↔  ¬  ( ∫1 ‘ 𝑃 )  ≤  𝑆 ) ) | 
						
							| 73 | 41 71 72 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  <  ( ∫1 ‘ 𝑃 )  ↔  ¬  ( ∫1 ‘ 𝑃 )  ≤  𝑆 ) ) | 
						
							| 74 | 9 73 | mpbird | ⊢ ( 𝜑  →  𝑆  <  ( ∫1 ‘ 𝑃 ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑆  <  ( ∫1 ‘ 𝑃 ) ) | 
						
							| 76 | 21 11 15 57 75 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  0  <  ( ∫1 ‘ 𝑃 ) ) | 
						
							| 77 |  | lemul1 | ⊢ ( ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ∈  ℝ  ∧  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∈  ℝ  ∧  ( ( ∫1 ‘ 𝑃 )  ∈  ℝ  ∧  0  <  ( ∫1 ‘ 𝑃 ) ) )  →  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ≤  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ↔  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ·  ( ∫1 ‘ 𝑃 ) )  ≤  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( ∫1 ‘ 𝑃 ) ) ) ) | 
						
							| 78 | 62 66 15 76 77 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ≤  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ↔  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ·  ( ∫1 ‘ 𝑃 ) )  ≤  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( ∫1 ‘ 𝑃 ) ) ) ) | 
						
							| 79 | 69 78 | mpbid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ·  ( ∫1 ‘ 𝑃 ) )  ≤  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( ∫1 ‘ 𝑃 ) ) ) | 
						
							| 80 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  MblFn ) | 
						
							| 81 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 82 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∘r   ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 83 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 84 | 64 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 85 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 86 | 85 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  0  <  ( 1  /  2 ) ) | 
						
							| 87 |  | max1 | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ∈  ℝ )  →  ( 1  /  2 )  ≤  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) ) ) | 
						
							| 88 | 64 62 87 | sylancr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 1  /  2 )  ≤  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) ) ) | 
						
							| 89 | 21 84 66 86 88 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  0  <  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) ) ) | 
						
							| 90 | 20 | mulridd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( 𝑆  +  𝑡 )  ·  1 )  =  ( 𝑆  +  𝑡 ) ) | 
						
							| 91 | 58 90 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑆  <  ( ( 𝑆  +  𝑡 )  ·  1 ) ) | 
						
							| 92 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  1  ∈  ℝ ) | 
						
							| 93 |  | ltdivmul | ⊢ ( ( 𝑆  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( 𝑆  +  𝑡 )  ∈  ℝ  ∧  0  <  ( 𝑆  +  𝑡 ) ) )  →  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  <  1  ↔  𝑆  <  ( ( 𝑆  +  𝑡 )  ·  1 ) ) ) | 
						
							| 94 | 11 92 19 59 93 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  <  1  ↔  𝑆  <  ( ( 𝑆  +  𝑡 )  ·  1 ) ) ) | 
						
							| 95 | 91 94 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 𝑆  /  ( 𝑆  +  𝑡 ) )  <  1 ) | 
						
							| 96 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 97 |  | breq1 | ⊢ ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  =  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  →  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  <  1  ↔  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  <  1 ) ) | 
						
							| 98 |  | breq1 | ⊢ ( ( 1  /  2 )  =  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  →  ( ( 1  /  2 )  <  1  ↔  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  <  1 ) ) | 
						
							| 99 | 97 98 | ifboth | ⊢ ( ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  <  1  ∧  ( 1  /  2 )  <  1 )  →  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  <  1 ) | 
						
							| 100 | 95 96 99 | sylancl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  <  1 ) | 
						
							| 101 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 102 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ* )  →  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∈  ( 0 (,) 1 )  ↔  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∈  ℝ  ∧  0  <  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∧  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  <  1 ) ) ) | 
						
							| 103 | 22 101 102 | mp2an | ⊢ ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∈  ( 0 (,) 1 )  ↔  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∈  ℝ  ∧  0  <  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∧  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  <  1 ) ) | 
						
							| 104 | 66 89 100 103 | syl3anbrc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ∈  ( 0 (,) 1 ) ) | 
						
							| 105 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  𝑃  ∘r   ≤  𝐺 ) | 
						
							| 106 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑃 ‘ 𝑦 )  =  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 107 | 106 | oveq2d | ⊢ ( 𝑦  =  𝑥  →  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( 𝑃 ‘ 𝑦 ) )  =  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 108 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 109 | 107 108 | breq12d | ⊢ ( 𝑦  =  𝑥  →  ( ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( 𝑃 ‘ 𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 )  ↔  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( 𝑃 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 110 | 109 | cbvrabv | ⊢ { 𝑦  ∈  ℝ  ∣  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( 𝑃 ‘ 𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) }  =  { 𝑥  ∈  ℝ  ∣  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( 𝑃 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | 
						
							| 111 | 110 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ  ↦  { 𝑦  ∈  ℝ  ∣  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( 𝑃 ‘ 𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) } )  =  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  ℝ  ∣  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( 𝑃 ‘ 𝑥 ) )  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 112 | 1 80 81 82 83 6 104 13 105 11 111 | itg2monolem1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( ∫1 ‘ 𝑃 ) )  ≤  𝑆 ) | 
						
							| 113 | 63 67 11 79 112 | letrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( 𝑆  /  ( 𝑆  +  𝑡 ) )  ·  ( ∫1 ‘ 𝑃 ) )  ≤  𝑆 ) | 
						
							| 114 | 61 113 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  /  ( 𝑆  +  𝑡 ) )  ≤  𝑆 ) | 
						
							| 115 | 11 15 | remulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 116 |  | ledivmul2 | ⊢ ( ( ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  ∈  ℝ  ∧  𝑆  ∈  ℝ  ∧  ( ( 𝑆  +  𝑡 )  ∈  ℝ  ∧  0  <  ( 𝑆  +  𝑡 ) ) )  →  ( ( ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  /  ( 𝑆  +  𝑡 ) )  ≤  𝑆  ↔  ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  ≤  ( 𝑆  ·  ( 𝑆  +  𝑡 ) ) ) ) | 
						
							| 117 | 115 11 19 59 116 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  /  ( 𝑆  +  𝑡 ) )  ≤  𝑆  ↔  ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  ≤  ( 𝑆  ·  ( 𝑆  +  𝑡 ) ) ) ) | 
						
							| 118 | 114 117 | mpbid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  ≤  ( 𝑆  ·  ( 𝑆  +  𝑡 ) ) ) | 
						
							| 119 | 66 15 89 76 | mulgt0d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  0  <  ( if ( ( 1  /  2 )  ≤  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 𝑆  /  ( 𝑆  +  𝑡 ) ) ,  ( 1  /  2 ) )  ·  ( ∫1 ‘ 𝑃 ) ) ) | 
						
							| 120 | 21 67 11 119 112 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  0  <  𝑆 ) | 
						
							| 121 |  | lemul2 | ⊢ ( ( ( ∫1 ‘ 𝑃 )  ∈  ℝ  ∧  ( 𝑆  +  𝑡 )  ∈  ℝ  ∧  ( 𝑆  ∈  ℝ  ∧  0  <  𝑆 ) )  →  ( ( ∫1 ‘ 𝑃 )  ≤  ( 𝑆  +  𝑡 )  ↔  ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  ≤  ( 𝑆  ·  ( 𝑆  +  𝑡 ) ) ) ) | 
						
							| 122 | 15 19 11 120 121 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ( ∫1 ‘ 𝑃 )  ≤  ( 𝑆  +  𝑡 )  ↔  ( 𝑆  ·  ( ∫1 ‘ 𝑃 ) )  ≤  ( 𝑆  ·  ( 𝑆  +  𝑡 ) ) ) ) | 
						
							| 123 | 118 122 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ+ )  →  ( ∫1 ‘ 𝑃 )  ≤  ( 𝑆  +  𝑡 ) ) | 
						
							| 124 | 123 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ℝ+ ( ∫1 ‘ 𝑃 )  ≤  ( 𝑆  +  𝑡 ) ) | 
						
							| 125 |  | alrple | ⊢ ( ( ( ∫1 ‘ 𝑃 )  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( ( ∫1 ‘ 𝑃 )  ≤  𝑆  ↔  ∀ 𝑡  ∈  ℝ+ ( ∫1 ‘ 𝑃 )  ≤  ( 𝑆  +  𝑡 ) ) ) | 
						
							| 126 | 70 10 125 | syl2anc | ⊢ ( 𝜑  →  ( ( ∫1 ‘ 𝑃 )  ≤  𝑆  ↔  ∀ 𝑡  ∈  ℝ+ ( ∫1 ‘ 𝑃 )  ≤  ( 𝑆  +  𝑡 ) ) ) | 
						
							| 127 | 124 126 | mpbird | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝑃 )  ≤  𝑆 ) |