| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mulc.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 2 |  | itg2mulc.3 | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 3 |  | itg2mulc.4 | ⊢ ( 𝜑  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 4 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 6 |  | elrege0 | ⊢ ( 𝐴  ∈  ( 0 [,) +∞ )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 7 | 3 6 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 9 | 8 | anim1i | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 10 |  | elrp | ⊢ ( 𝐴  ∈  ℝ+  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 12 | 4 5 11 | itg2mulclem | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 13 |  | ge0mulcl | ⊢ ( ( 𝑥  ∈  ( 0 [,) +∞ )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 0 [,) +∞ )  ∧  𝑦  ∈  ( 0 [,) +∞ ) ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 15 |  | fconst6g | ⊢ ( 𝐴  ∈  ( 0 [,) +∞ )  →  ( ℝ  ×  { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  ( ℝ  ×  { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 17 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 19 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 20 | 14 16 1 18 18 19 | off | ⊢ ( 𝜑  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 22 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 23 |  | fss | ⊢ ( ( ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 24 | 20 22 23 | sylancl | ⊢ ( 𝜑  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 26 | 8 2 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∈  ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∈  ℝ ) | 
						
							| 28 |  | itg2lecl | ⊢ ( ( ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ∈  ℝ ) | 
						
							| 29 | 25 27 12 28 | syl3anc | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ∈  ℝ ) | 
						
							| 30 | 11 | rpreccld | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( 1  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 31 | 21 29 30 | itg2mulclem | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ∫2 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) )  ≤  ( ( 1  /  𝐴 )  ·  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) ) | 
						
							| 32 | 4 | feqmptd | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 33 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 34 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 35 | 33 34 | sstri | ⊢ ( 0 [,) +∞ )  ⊆  ℂ | 
						
							| 36 |  | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ℂ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 37 | 1 35 36 | sylancl | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 39 | 38 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  0  <  𝐴 )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 40 | 39 | mullidd | ⊢ ( ( ( 𝜑  ∧  0  <  𝐴 )  ∧  𝑦  ∈  ℝ )  →  ( 1  ·  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 41 | 40 | mpteq2dva | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( 𝑦  ∈  ℝ  ↦  ( 1  ·  ( 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 42 | 32 41 | eqtr4d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( 1  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 43 | 17 | a1i | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ℝ  ∈  V ) | 
						
							| 44 |  | 1red | ⊢ ( ( ( 𝜑  ∧  0  <  𝐴 )  ∧  𝑦  ∈  ℝ )  →  1  ∈  ℝ ) | 
						
							| 45 | 43 30 11 | ofc12 | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ℝ  ×  { 𝐴 } ) )  =  ( ℝ  ×  { ( ( 1  /  𝐴 )  ·  𝐴 ) } ) ) | 
						
							| 46 |  | fconstmpt | ⊢ ( ℝ  ×  { ( ( 1  /  𝐴 )  ·  𝐴 ) } )  =  ( 𝑦  ∈  ℝ  ↦  ( ( 1  /  𝐴 )  ·  𝐴 ) ) | 
						
							| 47 | 45 46 | eqtrdi | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ℝ  ×  { 𝐴 } ) )  =  ( 𝑦  ∈  ℝ  ↦  ( ( 1  /  𝐴 )  ·  𝐴 ) ) ) | 
						
							| 48 | 8 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 50 | 11 | rpne0d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 51 | 49 50 | recid2d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( 1  /  𝐴 )  ·  𝐴 )  =  1 ) | 
						
							| 52 | 51 | mpteq2dv | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( 𝑦  ∈  ℝ  ↦  ( ( 1  /  𝐴 )  ·  𝐴 ) )  =  ( 𝑦  ∈  ℝ  ↦  1 ) ) | 
						
							| 53 | 47 52 | eqtrd | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ℝ  ×  { 𝐴 } ) )  =  ( 𝑦  ∈  ℝ  ↦  1 ) ) | 
						
							| 54 | 43 44 39 53 32 | offval2 | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ℝ  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  =  ( 𝑦  ∈  ℝ  ↦  ( 1  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 55 | 30 | rpcnd | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 56 |  | fconst6g | ⊢ ( ( 1  /  𝐴 )  ∈  ℂ  →  ( ℝ  ×  { ( 1  /  𝐴 ) } ) : ℝ ⟶ ℂ ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ℝ  ×  { ( 1  /  𝐴 ) } ) : ℝ ⟶ ℂ ) | 
						
							| 58 |  | fconst6g | ⊢ ( 𝐴  ∈  ℂ  →  ( ℝ  ×  { 𝐴 } ) : ℝ ⟶ ℂ ) | 
						
							| 59 | 49 58 | syl | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ℝ  ×  { 𝐴 } ) : ℝ ⟶ ℂ ) | 
						
							| 60 |  | mulass | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( 𝜑  ∧  0  <  𝐴 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 62 | 43 57 59 38 61 | caofass | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ℝ  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  =  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) | 
						
							| 63 | 42 54 62 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐹  =  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ∫2 ‘ 𝐹 )  =  ( ∫2 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) ) | 
						
							| 65 | 29 | recnd | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ∈  ℂ ) | 
						
							| 66 | 65 49 50 | divrec2d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  /  𝐴 )  =  ( ( 1  /  𝐴 )  ·  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) ) | 
						
							| 67 | 31 64 66 | 3brtr4d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ∫2 ‘ 𝐹 )  ≤  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  /  𝐴 ) ) | 
						
							| 68 | 5 29 11 | lemuldiv2d | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ≤  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ↔  ( ∫2 ‘ 𝐹 )  ≤  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  /  𝐴 ) ) ) | 
						
							| 69 | 67 68 | mpbird | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ≤  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) | 
						
							| 70 |  | itg2cl | ⊢ ( ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ∈  ℝ* ) | 
						
							| 71 | 24 70 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ∈  ℝ* ) | 
						
							| 72 | 26 | rexrd | ⊢ ( 𝜑  →  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∈  ℝ* ) | 
						
							| 73 |  | xrletri3 | ⊢ ( ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ∈  ℝ*  ∧  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∈  ℝ* )  →  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ↔  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∧  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ≤  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) ) ) | 
						
							| 74 | 71 72 73 | syl2anc | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ↔  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∧  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ≤  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ↔  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∧  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ≤  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) ) ) | 
						
							| 76 | 12 69 75 | mpbir2and | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 77 | 17 | a1i | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ℝ  ∈  V ) | 
						
							| 78 | 37 | adantr | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 79 | 8 | adantr | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 80 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 81 | 80 | a1i | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 82 |  | simplr | ⊢ ( ( ( 𝜑  ∧  0  =  𝐴 )  ∧  𝑥  ∈  ℂ )  →  0  =  𝐴 ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( ( ( 𝜑  ∧  0  =  𝐴 )  ∧  𝑥  ∈  ℂ )  →  ( 0  ·  𝑥 )  =  ( 𝐴  ·  𝑥 ) ) | 
						
							| 84 |  | mul02 | ⊢ ( 𝑥  ∈  ℂ  →  ( 0  ·  𝑥 )  =  0 ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( ( 𝜑  ∧  0  =  𝐴 )  ∧  𝑥  ∈  ℂ )  →  ( 0  ·  𝑥 )  =  0 ) | 
						
							| 86 | 83 85 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  0  =  𝐴 )  ∧  𝑥  ∈  ℂ )  →  ( 𝐴  ·  𝑥 )  =  0 ) | 
						
							| 87 | 77 78 79 81 86 | caofid2 | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 )  =  ( ℝ  ×  { 0 } ) ) | 
						
							| 88 | 87 | fveq2d | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( ∫2 ‘ ( ℝ  ×  { 0 } ) ) ) | 
						
							| 89 |  | itg20 | ⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 90 | 88 89 | eqtrdi | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  0 ) | 
						
							| 91 | 2 | adantr | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 92 | 91 | recnd | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( ∫2 ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 93 | 92 | mul02d | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( 0  ·  ( ∫2 ‘ 𝐹 ) )  =  0 ) | 
						
							| 94 |  | simpr | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  0  =  𝐴 ) | 
						
							| 95 | 94 | oveq1d | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( 0  ·  ( ∫2 ‘ 𝐹 ) )  =  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 96 | 90 93 95 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 97 | 7 | simprd | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 98 |  | leloe | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 99 | 80 8 98 | sylancr | ⊢ ( 𝜑  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 100 | 97 99 | mpbid | ⊢ ( 𝜑  →  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) | 
						
							| 101 | 76 96 100 | mpjaodan | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) |