| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mulc.2 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 2 |  | itg2mulc.3 | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 3 |  | itg2mulclem.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 4 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 5 |  | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 6 | 1 4 5 | sylancl | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝑓  ∈  dom  ∫1 ) | 
						
							| 9 | 3 | rpreccld | ⊢ ( 𝜑  →  ( 1  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 1  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 11 | 10 | rpred | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 12 | 8 11 | i1fmulc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  ∈  dom  ∫1 ) | 
						
							| 13 |  | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  ∈  dom  ∫1  ∧  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 14 | 13 | 3expia | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  ∈  dom  ∫1 )  →  ( ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  ∘r   ≤  𝐹  →  ( ∫1 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 15 | 7 12 14 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  ∘r   ≤  𝐹  →  ( ∫1 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 16 |  | i1ff | ⊢ ( 𝑓  ∈  dom  ∫1  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 18 | 17 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 19 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 20 |  | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ℝ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 21 | 1 19 20 | sylancl | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 23 | 22 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 24 | 3 | rpred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 26 | 3 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐴 ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  0  <  𝐴 ) | 
						
							| 28 |  | ledivmul | ⊢ ( ( ( 𝑓 ‘ 𝑦 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( ( 𝑓 ‘ 𝑦 )  /  𝐴 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 29 | 18 23 25 27 28 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( ( ( 𝑓 ‘ 𝑦 )  /  𝐴 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 30 | 18 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 31 | 25 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 32 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 33 | 32 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝐴  ≠  0 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  𝐴  ≠  0 ) | 
						
							| 35 | 30 31 34 | divrec2d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑓 ‘ 𝑦 )  /  𝐴 )  =  ( ( 1  /  𝐴 )  ·  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 36 | 35 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( ( ( 𝑓 ‘ 𝑦 )  /  𝐴 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  ( ( 1  /  𝐴 )  ·  ( 𝑓 ‘ 𝑦 ) )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 37 | 29 36 | bitr3d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 1  /  𝐴 )  ·  ( 𝑓 ‘ 𝑦 ) )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 38 | 37 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ∀ 𝑦  ∈  ℝ ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ℝ ( ( 1  /  𝐴 )  ·  ( 𝑓 ‘ 𝑦 ) )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 39 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ℝ  ∈  V ) | 
						
							| 41 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  ∈  V ) | 
						
							| 42 | 17 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝑓  =  ( 𝑦  ∈  ℝ  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 43 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  𝐴  ∈  ℝ+ ) | 
						
							| 44 |  | fconstmpt | ⊢ ( ℝ  ×  { 𝐴 } )  =  ( 𝑦  ∈  ℝ  ↦  𝐴 ) | 
						
							| 45 | 44 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ℝ  ×  { 𝐴 } )  =  ( 𝑦  ∈  ℝ  ↦  𝐴 ) ) | 
						
							| 46 | 1 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 48 | 40 43 23 45 47 | offval2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 )  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 49 | 40 18 41 42 48 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 )  ↔  ∀ 𝑦  ∈  ℝ ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 50 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( ( 1  /  𝐴 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∈  V ) | 
						
							| 51 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑦  ∈  ℝ )  →  ( 1  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 52 |  | fconstmpt | ⊢ ( ℝ  ×  { ( 1  /  𝐴 ) } )  =  ( 𝑦  ∈  ℝ  ↦  ( 1  /  𝐴 ) ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ℝ  ×  { ( 1  /  𝐴 ) } )  =  ( 𝑦  ∈  ℝ  ↦  ( 1  /  𝐴 ) ) ) | 
						
							| 54 | 40 51 18 53 42 | offval2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  =  ( 𝑦  ∈  ℝ  ↦  ( ( 1  /  𝐴 )  ·  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 55 | 40 50 23 54 47 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  ∘r   ≤  𝐹  ↔  ∀ 𝑦  ∈  ℝ ( ( 1  /  𝐴 )  ·  ( 𝑓 ‘ 𝑦 ) )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 56 | 38 49 55 | 3bitr4d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 )  ↔  ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 )  ∘r   ≤  𝐹 ) ) | 
						
							| 57 | 8 11 | itg1mulc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ∫1 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 ) )  =  ( ( 1  /  𝐴 )  ·  ( ∫1 ‘ 𝑓 ) ) ) | 
						
							| 58 |  | itg1cl | ⊢ ( 𝑓  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ∫1 ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 60 | 59 | recnd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ∫1 ‘ 𝑓 )  ∈  ℂ ) | 
						
							| 61 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝐴  ∈  ℝ ) | 
						
							| 62 | 61 | recnd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝐴  ∈  ℂ ) | 
						
							| 63 | 60 62 33 | divrec2d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ∫1 ‘ 𝑓 )  /  𝐴 )  =  ( ( 1  /  𝐴 )  ·  ( ∫1 ‘ 𝑓 ) ) ) | 
						
							| 64 | 57 63 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ∫1 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 ) )  =  ( ( ∫1 ‘ 𝑓 )  /  𝐴 ) ) | 
						
							| 65 | 64 | breq1d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ∫1 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 ) )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ( ( ∫1 ‘ 𝑓 )  /  𝐴 )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 66 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 67 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  0  <  𝐴 ) | 
						
							| 68 |  | ledivmul | ⊢ ( ( ( ∫1 ‘ 𝑓 )  ∈  ℝ  ∧  ( ∫2 ‘ 𝐹 )  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( ( ∫1 ‘ 𝑓 )  /  𝐴 )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ( ∫1 ‘ 𝑓 )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) ) | 
						
							| 69 | 59 66 61 67 68 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ( ∫1 ‘ 𝑓 )  /  𝐴 )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ( ∫1 ‘ 𝑓 )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) ) | 
						
							| 70 | 65 69 | bitr2d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( ∫1 ‘ 𝑓 )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ↔  ( ∫1 ‘ ( ( ℝ  ×  { ( 1  /  𝐴 ) } )  ∘f   ·  𝑓 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 71 | 15 56 70 | 3imtr4d | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 )  →  ( ∫1 ‘ 𝑓 )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) ) | 
						
							| 72 | 71 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 )  →  ( ∫1 ‘ 𝑓 )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) ) | 
						
							| 73 |  | ge0mulcl | ⊢ ( ( 𝑥  ∈  ( 0 [,) +∞ )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 0 [,) +∞ )  ∧  𝑦  ∈  ( 0 [,) +∞ ) ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 75 |  | fconstg | ⊢ ( 𝐴  ∈  ℝ+  →  ( ℝ  ×  { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) | 
						
							| 76 | 3 75 | syl | ⊢ ( 𝜑  →  ( ℝ  ×  { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) | 
						
							| 77 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 78 |  | rpge0 | ⊢ ( 𝐴  ∈  ℝ+  →  0  ≤  𝐴 ) | 
						
							| 79 |  | elrege0 | ⊢ ( 𝐴  ∈  ( 0 [,) +∞ )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 80 | 77 78 79 | sylanbrc | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 81 | 3 80 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 82 | 81 | snssd | ⊢ ( 𝜑  →  { 𝐴 }  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 83 | 76 82 | fssd | ⊢ ( 𝜑  →  ( ℝ  ×  { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 84 | 39 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 85 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 86 | 74 83 1 84 84 85 | off | ⊢ ( 𝜑  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 87 |  | fss | ⊢ ( ( ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,) +∞ )  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 88 | 86 4 87 | sylancl | ⊢ ( 𝜑  →  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 89 | 24 2 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∈  ℝ ) | 
						
							| 90 | 89 | rexrd | ⊢ ( 𝜑  →  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∈  ℝ* ) | 
						
							| 91 |  | itg2leub | ⊢ ( ( ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ∈  ℝ* )  →  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 )  →  ( ∫1 ‘ 𝑓 )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) ) ) | 
						
							| 92 | 88 90 91 | syl2anc | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 )  →  ( ∫1 ‘ 𝑓 )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) ) ) | 
						
							| 93 | 72 92 | mpbird | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  ≤  ( 𝐴  ·  ( ∫2 ‘ 𝐹 ) ) ) |