| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 2 |
1
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑛 ∈ ℝ ) |
| 3 |
2
|
ltpnfd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑛 < +∞ ) |
| 4 |
|
iftrue |
⊢ ( ( ∫2 ‘ 𝐹 ) = +∞ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) |
| 6 |
|
simpr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) = +∞ ) |
| 7 |
3 5 6
|
3brtr4d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 8 |
|
iffalse |
⊢ ( ¬ ( ∫2 ‘ 𝐹 ) = +∞ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) |
| 10 |
|
itg2cl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 11 |
|
xrrebnd |
⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ( ∫2 ‘ 𝐹 ) ∈ ℝ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) ∈ ℝ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) |
| 13 |
|
itg2ge0 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) |
| 14 |
|
mnflt0 |
⊢ -∞ < 0 |
| 15 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 16 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 17 |
|
xrltletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ 𝐹 ) ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) |
| 18 |
15 16 10 17
|
mp3an12i |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ 𝐹 ) ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) |
| 19 |
14 18
|
mpani |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 0 ≤ ( ∫2 ‘ 𝐹 ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) |
| 20 |
13 19
|
mpd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → -∞ < ( ∫2 ‘ 𝐹 ) ) |
| 21 |
20
|
biantrurd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) < +∞ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) |
| 22 |
|
nltpnft |
⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ( ∫2 ‘ 𝐹 ) = +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) < +∞ ) ) |
| 23 |
10 22
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) = +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) < +∞ ) ) |
| 24 |
23
|
con2bid |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) < +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ) |
| 25 |
12 21 24
|
3bitr2rd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ¬ ( ∫2 ‘ 𝐹 ) = +∞ ↔ ( ∫2 ‘ 𝐹 ) ∈ ℝ ) ) |
| 26 |
25
|
biimpa |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 27 |
26
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 28 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 29 |
28
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 30 |
29
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 31 |
27 30
|
ltsubrpd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 32 |
9 31
|
eqbrtrd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 33 |
7 32
|
pm2.61dan |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 34 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 35 |
34
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 36 |
27 35
|
resubcld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 37 |
2 36
|
ifclda |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 38 |
37
|
rexrd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
| 39 |
10
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 40 |
|
xrltnle |
⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 42 |
33 41
|
mpbid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 43 |
|
itg2leub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
| 44 |
38 43
|
syldan |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
| 45 |
42 44
|
mtbid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 46 |
|
rexanali |
⊢ ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ↔ ¬ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 47 |
45 46
|
sylibr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 48 |
|
itg1cl |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 49 |
|
ltnle |
⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 50 |
37 48 49
|
syl2an |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ dom ∫1 ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 51 |
50
|
anbi2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ dom ∫1 ) → ( ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
| 52 |
51
|
rexbidva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
| 53 |
47 52
|
mpbird |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ) |
| 54 |
53
|
ralrimiva |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ) |
| 55 |
|
ovex |
⊢ ( ℝ ↑m ℝ ) ∈ V |
| 56 |
|
i1ff |
⊢ ( 𝑥 ∈ dom ∫1 → 𝑥 : ℝ ⟶ ℝ ) |
| 57 |
|
reex |
⊢ ℝ ∈ V |
| 58 |
57 57
|
elmap |
⊢ ( 𝑥 ∈ ( ℝ ↑m ℝ ) ↔ 𝑥 : ℝ ⟶ ℝ ) |
| 59 |
56 58
|
sylibr |
⊢ ( 𝑥 ∈ dom ∫1 → 𝑥 ∈ ( ℝ ↑m ℝ ) ) |
| 60 |
59
|
ssriv |
⊢ dom ∫1 ⊆ ( ℝ ↑m ℝ ) |
| 61 |
55 60
|
ssexi |
⊢ dom ∫1 ∈ V |
| 62 |
|
nnenom |
⊢ ℕ ≈ ω |
| 63 |
|
breq1 |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) ) |
| 64 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ∫1 ‘ 𝑓 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 65 |
64
|
breq2d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 66 |
63 65
|
anbi12d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
| 67 |
61 62 66
|
axcc4 |
⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
| 68 |
54 67
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
| 69 |
|
simprl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → 𝑔 : ℕ ⟶ dom ∫1 ) |
| 70 |
|
simpl |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) |
| 71 |
70
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) |
| 72 |
71
|
ad2antll |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) |
| 73 |
10
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 74 |
|
ffvelcdm |
⊢ ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 75 |
|
itg1cl |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) |
| 76 |
74 75
|
syl |
⊢ ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) |
| 77 |
76
|
fmpttd |
⊢ ( 𝑔 : ℕ ⟶ dom ∫1 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 78 |
77
|
ad2antrl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 79 |
78
|
frnd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ ) |
| 80 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 81 |
79 80
|
sstrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 82 |
|
supxrcl |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 83 |
81 82
|
syl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 84 |
38
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
| 85 |
76
|
adantll |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) |
| 86 |
85
|
rexrd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 87 |
|
xrltle |
⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 88 |
84 86 87
|
syl2anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 89 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 90 |
89
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 91 |
90
|
rneqi |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 92 |
77
|
adantl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 93 |
92
|
frnd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ ) |
| 94 |
93 80
|
sstrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 96 |
91 95
|
eqsstrrid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ⊆ ℝ* ) |
| 97 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 98 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 99 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ V |
| 100 |
97 98 99
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 101 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ∈ V |
| 102 |
101 98
|
fnmpti |
⊢ ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) Fn ℕ |
| 103 |
|
fnfvelrn |
⊢ ( ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 104 |
102 103
|
mpan |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 105 |
100 104
|
eqeltrrd |
⊢ ( 𝑛 ∈ ℕ → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 106 |
105
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 107 |
|
supxrub |
⊢ ( ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ⊆ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 108 |
96 106 107
|
syl2anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 109 |
91
|
supeq1i |
⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) |
| 110 |
95 82
|
syl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 111 |
109 110
|
eqeltrrid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 112 |
|
xrletr |
⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ∧ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) → ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 113 |
84 86 111 112
|
syl3anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 114 |
108 113
|
mpan2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 115 |
88 114
|
syld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 116 |
115
|
adantld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 117 |
116
|
ralimdva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 118 |
117
|
impr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 119 |
|
breq2 |
⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 120 |
119
|
ralbidv |
⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 121 |
|
breq2 |
⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ↔ ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 122 |
120 121
|
imbi12d |
⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ↔ ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) ) |
| 123 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
| 124 |
|
simplrl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 ∈ ℝ ) |
| 125 |
|
arch |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
| 126 |
124 125
|
syl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
| 127 |
4
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) |
| 128 |
127
|
breq2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ 𝑥 < 𝑛 ) ) |
| 129 |
128
|
rexbidv |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) ) |
| 130 |
126 129
|
mpbird |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 131 |
26
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 132 |
|
simplrl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 ∈ ℝ ) |
| 133 |
131 132
|
resubcld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ∈ ℝ ) |
| 134 |
|
simplrr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 < ( ∫2 ‘ 𝐹 ) ) |
| 135 |
132 131
|
posdifd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) ) |
| 136 |
134 135
|
mpbid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) |
| 137 |
|
nnrecl |
⊢ ( ( ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ∈ ℝ ∧ 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) |
| 138 |
133 136 137
|
syl2anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) |
| 139 |
34
|
adantl |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 140 |
131
|
adantr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 141 |
132
|
adantr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 142 |
|
ltsub13 |
⊢ ( ( ( 1 / 𝑛 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 143 |
139 140 141 142
|
syl3anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 144 |
8
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) |
| 145 |
144
|
breq2d |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 146 |
143 145
|
bitr4d |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 147 |
146
|
rexbidva |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 148 |
138 147
|
mpbid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 149 |
130 148
|
pm2.61dan |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 150 |
149
|
expr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 151 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 152 |
|
xrltnle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 153 |
151 10 152
|
syl2anr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 154 |
151
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ* ) |
| 155 |
38
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
| 156 |
|
xrltnle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 157 |
154 155 156
|
syl2anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 158 |
157
|
rexbidva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 159 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ ℕ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
| 160 |
158 159
|
bitrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 161 |
150 153 160
|
3imtr3d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 → ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 162 |
161
|
con4d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 163 |
10
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 164 |
|
pnfge |
⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ∫2 ‘ 𝐹 ) ≤ +∞ ) |
| 165 |
163 164
|
syl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ≤ +∞ ) |
| 166 |
|
simpr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → 𝑥 = +∞ ) |
| 167 |
165 166
|
breqtrrd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) |
| 168 |
167
|
a1d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 169 |
|
1nn |
⊢ 1 ∈ ℕ |
| 170 |
169
|
ne0ii |
⊢ ℕ ≠ ∅ |
| 171 |
|
r19.2z |
⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) → ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
| 172 |
170 171
|
mpan |
⊢ ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
| 173 |
37
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 174 |
|
mnflt |
⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 175 |
|
rexr |
⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
| 176 |
|
xrltnle |
⊢ ( ( -∞ ∈ ℝ* ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) |
| 177 |
15 175 176
|
sylancr |
⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → ( -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) |
| 178 |
174 177
|
mpbid |
⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) |
| 179 |
173 178
|
syl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) |
| 180 |
|
simplr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 = -∞ ) |
| 181 |
180
|
breq2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) |
| 182 |
179 181
|
mtbird |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
| 183 |
182
|
nrexdv |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ¬ ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
| 184 |
183
|
pm2.21d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ( ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 185 |
172 184
|
syl5 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 186 |
162 168 185
|
3jaodan |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 187 |
123 186
|
sylan2b |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ* ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 188 |
187
|
ralrimiva |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑥 ∈ ℝ* ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 189 |
188
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑥 ∈ ℝ* ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 190 |
109 83
|
eqeltrrid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 191 |
122 189 190
|
rspcdva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 192 |
118 191
|
mpd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 193 |
192 109
|
breqtrrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 194 |
|
itg2ub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 195 |
194
|
3expia |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 196 |
74 195
|
sylan2 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 197 |
196
|
anassrs |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 198 |
197
|
adantrd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 199 |
198
|
ralimdva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 200 |
199
|
impr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 201 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 202 |
89 201 101
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 203 |
202
|
breq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 204 |
203
|
ralbiia |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 205 |
89
|
breq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 206 |
205
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 207 |
204 206
|
bitr4i |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 208 |
200 207
|
sylibr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 209 |
|
ffn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) Fn ℕ ) |
| 210 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) → ( 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 211 |
210
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 212 |
78 209 211
|
3syl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 213 |
208 212
|
mpbird |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) |
| 214 |
|
supxrleub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 215 |
81 73 214
|
syl2anc |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 216 |
213 215
|
mpbird |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 217 |
73 83 193 216
|
xrletrid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 218 |
69 72 217
|
3jca |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) |
| 219 |
218
|
ex |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) → ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) ) |
| 220 |
219
|
eximdv |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) ) |
| 221 |
68 220
|
mpd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) |