Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
2 |
1
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑛 ∈ ℝ ) |
3 |
2
|
ltpnfd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑛 < +∞ ) |
4 |
|
iftrue |
⊢ ( ( ∫2 ‘ 𝐹 ) = +∞ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) |
6 |
|
simpr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) = +∞ ) |
7 |
3 5 6
|
3brtr4d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
8 |
|
iffalse |
⊢ ( ¬ ( ∫2 ‘ 𝐹 ) = +∞ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) |
10 |
|
itg2cl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
11 |
|
xrrebnd |
⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ( ∫2 ‘ 𝐹 ) ∈ ℝ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) ∈ ℝ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) |
13 |
|
itg2ge0 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) |
14 |
|
mnflt0 |
⊢ -∞ < 0 |
15 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
16 |
|
0xr |
⊢ 0 ∈ ℝ* |
17 |
|
xrltletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ 𝐹 ) ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) |
18 |
15 16 10 17
|
mp3an12i |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ 𝐹 ) ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) |
19 |
14 18
|
mpani |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 0 ≤ ( ∫2 ‘ 𝐹 ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) |
20 |
13 19
|
mpd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → -∞ < ( ∫2 ‘ 𝐹 ) ) |
21 |
20
|
biantrurd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) < +∞ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) |
22 |
|
nltpnft |
⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ( ∫2 ‘ 𝐹 ) = +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) < +∞ ) ) |
23 |
10 22
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) = +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) < +∞ ) ) |
24 |
23
|
con2bid |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) < +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ) |
25 |
12 21 24
|
3bitr2rd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ¬ ( ∫2 ‘ 𝐹 ) = +∞ ↔ ( ∫2 ‘ 𝐹 ) ∈ ℝ ) ) |
26 |
25
|
biimpa |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
27 |
26
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
28 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
29 |
28
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
30 |
29
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
31 |
27 30
|
ltsubrpd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) < ( ∫2 ‘ 𝐹 ) ) |
32 |
9 31
|
eqbrtrd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
33 |
7 32
|
pm2.61dan |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
34 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
36 |
27 35
|
resubcld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ∈ ℝ ) |
37 |
2 36
|
ifclda |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
38 |
37
|
rexrd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
39 |
10
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
40 |
|
xrltnle |
⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
42 |
33 41
|
mpbid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
43 |
|
itg2leub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
44 |
38 43
|
syldan |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
45 |
42 44
|
mtbid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
46 |
|
rexanali |
⊢ ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ↔ ¬ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
47 |
45 46
|
sylibr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
48 |
|
itg1cl |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
49 |
|
ltnle |
⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
50 |
37 48 49
|
syl2an |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ dom ∫1 ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
51 |
50
|
anbi2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ dom ∫1 ) → ( ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
52 |
51
|
rexbidva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
53 |
47 52
|
mpbird |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ) |
54 |
53
|
ralrimiva |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ) |
55 |
|
ovex |
⊢ ( ℝ ↑m ℝ ) ∈ V |
56 |
|
i1ff |
⊢ ( 𝑥 ∈ dom ∫1 → 𝑥 : ℝ ⟶ ℝ ) |
57 |
|
reex |
⊢ ℝ ∈ V |
58 |
57 57
|
elmap |
⊢ ( 𝑥 ∈ ( ℝ ↑m ℝ ) ↔ 𝑥 : ℝ ⟶ ℝ ) |
59 |
56 58
|
sylibr |
⊢ ( 𝑥 ∈ dom ∫1 → 𝑥 ∈ ( ℝ ↑m ℝ ) ) |
60 |
59
|
ssriv |
⊢ dom ∫1 ⊆ ( ℝ ↑m ℝ ) |
61 |
55 60
|
ssexi |
⊢ dom ∫1 ∈ V |
62 |
|
nnenom |
⊢ ℕ ≈ ω |
63 |
|
breq1 |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) ) |
64 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ∫1 ‘ 𝑓 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
65 |
64
|
breq2d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
66 |
63 65
|
anbi12d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
67 |
61 62 66
|
axcc4 |
⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
68 |
54 67
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
69 |
|
simprl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → 𝑔 : ℕ ⟶ dom ∫1 ) |
70 |
|
simpl |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) |
71 |
70
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) |
72 |
71
|
ad2antll |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) |
73 |
10
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
74 |
|
ffvelrn |
⊢ ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ) |
75 |
|
itg1cl |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) |
76 |
74 75
|
syl |
⊢ ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) |
77 |
76
|
fmpttd |
⊢ ( 𝑔 : ℕ ⟶ dom ∫1 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
78 |
77
|
ad2antrl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
79 |
78
|
frnd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ ) |
80 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
81 |
79 80
|
sstrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
82 |
|
supxrcl |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
83 |
81 82
|
syl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
84 |
38
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
85 |
76
|
adantll |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) |
86 |
85
|
rexrd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ) |
87 |
|
xrltle |
⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
88 |
84 86 87
|
syl2anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
89 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
90 |
89
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
91 |
90
|
rneqi |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
92 |
77
|
adantl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
93 |
92
|
frnd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ ) |
94 |
93 80
|
sstrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
95 |
94
|
adantr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
96 |
91 95
|
eqsstrrid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ⊆ ℝ* ) |
97 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
98 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
99 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ V |
100 |
97 98 99
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
101 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ∈ V |
102 |
101 98
|
fnmpti |
⊢ ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) Fn ℕ |
103 |
|
fnfvelrn |
⊢ ( ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
104 |
102 103
|
mpan |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
105 |
100 104
|
eqeltrrd |
⊢ ( 𝑛 ∈ ℕ → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
106 |
105
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
107 |
|
supxrub |
⊢ ( ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ⊆ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
108 |
96 106 107
|
syl2anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
109 |
91
|
supeq1i |
⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) |
110 |
95 82
|
syl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
111 |
109 110
|
eqeltrrid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
112 |
|
xrletr |
⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ∧ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) → ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
113 |
84 86 111 112
|
syl3anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
114 |
108 113
|
mpan2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
115 |
88 114
|
syld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
116 |
115
|
adantld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
117 |
116
|
ralimdva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
118 |
117
|
impr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
119 |
|
breq2 |
⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
120 |
119
|
ralbidv |
⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
121 |
|
breq2 |
⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ↔ ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
122 |
120 121
|
imbi12d |
⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ↔ ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) ) |
123 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
124 |
|
simplrl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 ∈ ℝ ) |
125 |
|
arch |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
126 |
124 125
|
syl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
127 |
4
|
adantl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) |
128 |
127
|
breq2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ 𝑥 < 𝑛 ) ) |
129 |
128
|
rexbidv |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) ) |
130 |
126 129
|
mpbird |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
131 |
26
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
132 |
|
simplrl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 ∈ ℝ ) |
133 |
131 132
|
resubcld |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ∈ ℝ ) |
134 |
|
simplrr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 < ( ∫2 ‘ 𝐹 ) ) |
135 |
132 131
|
posdifd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) ) |
136 |
134 135
|
mpbid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) |
137 |
|
nnrecl |
⊢ ( ( ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ∈ ℝ ∧ 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) |
138 |
133 136 137
|
syl2anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) |
139 |
34
|
adantl |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
140 |
131
|
adantr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
141 |
132
|
adantr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
142 |
|
ltsub13 |
⊢ ( ( ( 1 / 𝑛 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
143 |
139 140 141 142
|
syl3anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
144 |
8
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) |
145 |
144
|
breq2d |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
146 |
143 145
|
bitr4d |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
147 |
146
|
rexbidva |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
148 |
138 147
|
mpbid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
149 |
130 148
|
pm2.61dan |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
150 |
149
|
expr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
151 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
152 |
|
xrltnle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
153 |
151 10 152
|
syl2anr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
154 |
151
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ* ) |
155 |
38
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
156 |
|
xrltnle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
157 |
154 155 156
|
syl2anc |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
158 |
157
|
rexbidva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
159 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ ℕ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
160 |
158 159
|
bitrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
161 |
150 153 160
|
3imtr3d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 → ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
162 |
161
|
con4d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
163 |
10
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
164 |
|
pnfge |
⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ∫2 ‘ 𝐹 ) ≤ +∞ ) |
165 |
163 164
|
syl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ≤ +∞ ) |
166 |
|
simpr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → 𝑥 = +∞ ) |
167 |
165 166
|
breqtrrd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) |
168 |
167
|
a1d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
169 |
|
1nn |
⊢ 1 ∈ ℕ |
170 |
169
|
ne0ii |
⊢ ℕ ≠ ∅ |
171 |
|
r19.2z |
⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) → ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
172 |
170 171
|
mpan |
⊢ ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
173 |
37
|
adantlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
174 |
|
mnflt |
⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
175 |
|
rexr |
⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
176 |
|
xrltnle |
⊢ ( ( -∞ ∈ ℝ* ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) |
177 |
15 175 176
|
sylancr |
⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → ( -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) |
178 |
174 177
|
mpbid |
⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) |
179 |
173 178
|
syl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) |
180 |
|
simplr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 = -∞ ) |
181 |
180
|
breq2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) |
182 |
179 181
|
mtbird |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
183 |
182
|
nrexdv |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ¬ ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
184 |
183
|
pm2.21d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ( ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
185 |
172 184
|
syl5 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
186 |
162 168 185
|
3jaodan |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
187 |
123 186
|
sylan2b |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ* ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
188 |
187
|
ralrimiva |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑥 ∈ ℝ* ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
189 |
188
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑥 ∈ ℝ* ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
190 |
109 83
|
eqeltrrid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
191 |
122 189 190
|
rspcdva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
192 |
118 191
|
mpd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
193 |
192 109
|
breqtrrdi |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
194 |
|
itg2ub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
195 |
194
|
3expia |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
196 |
74 195
|
sylan2 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
197 |
196
|
anassrs |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
198 |
197
|
adantrd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
199 |
198
|
ralimdva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
200 |
199
|
impr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
201 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
202 |
89 201 101
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
203 |
202
|
breq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
204 |
203
|
ralbiia |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
205 |
89
|
breq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
206 |
205
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
207 |
204 206
|
bitr4i |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
208 |
200 207
|
sylibr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
209 |
|
ffn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) Fn ℕ ) |
210 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) → ( 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
211 |
210
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
212 |
78 209 211
|
3syl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
213 |
208 212
|
mpbird |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) |
214 |
|
supxrleub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) ) |
215 |
81 73 214
|
syl2anc |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) ) |
216 |
213 215
|
mpbird |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ) |
217 |
73 83 193 216
|
xrletrid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
218 |
69 72 217
|
3jca |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) |
219 |
218
|
ex |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) → ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) ) |
220 |
219
|
eximdv |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) ) |
221 |
68 220
|
mpd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) |