| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2split.a | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 2 |  | itg2split.b | ⊢ ( 𝜑  →  𝐵  ∈  dom  vol ) | 
						
							| 3 |  | itg2split.i | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐴  ∩  𝐵 ) )  =  0 ) | 
						
							| 4 |  | itg2split.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 5 |  | itg2split.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 6 |  | itg2split.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 7 |  | itg2split.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 8 |  | itg2split.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 9 |  | itg2split.sf | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 10 |  | itg2split.sg | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 11 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝑈 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 12 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝑈 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 14 | 11 13 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 15 | 14 8 | fmptd | ⊢ ( 𝜑  →  𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 16 |  | itg2cl | ⊢ ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐻 )  ∈  ℝ* ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐻 )  ∈  ℝ* ) | 
						
							| 18 | 9 10 | readdcld | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 19 | 18 | rexrd | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ* ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 | itg2splitlem | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐻 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 21 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 22 |  | itg2lecl | ⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ  ∧  ( ∫2 ‘ 𝐻 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) )  →  ( ∫2 ‘ 𝐻 )  ∈  ℝ ) | 
						
							| 23 | 15 18 20 22 | syl3anc | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐻 )  ∈  ℝ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ∫2 ‘ 𝐻 )  ∈  ℝ ) | 
						
							| 25 |  | itg1cl | ⊢ ( 𝑓  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 26 | 25 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ∫1 ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 27 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝑓  ∈  dom  ∫1 ) | 
						
							| 28 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝑔  ∈  dom  ∫1 ) | 
						
							| 29 | 27 28 | itg1add | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( ∫1 ‘ ( 𝑓  ∘f   +  𝑔 ) )  =  ( ( ∫1 ‘ 𝑓 )  +  ( ∫1 ‘ 𝑔 ) ) ) | 
						
							| 30 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 31 | 27 28 | i1fadd | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( 𝑓  ∘f   +  𝑔 )  ∈  dom  ∫1 ) | 
						
							| 32 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 33 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 34 | 1 33 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 35 | 32 34 | sstrid | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  ℝ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( 𝐴  ∩  𝐵 )  ⊆  ℝ ) | 
						
							| 37 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( vol* ‘ ( 𝐴  ∩  𝐵 ) )  =  0 ) | 
						
							| 38 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑥 𝑓  ∈  dom  ∫1 | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑥 𝑓 | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑥  ∘r   ≤ | 
						
							| 42 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 43 | 6 42 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 44 | 40 41 43 | nfbr | ⊢ Ⅎ 𝑥 𝑓  ∘r   ≤  𝐹 | 
						
							| 45 | 39 44 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑥 𝑔  ∈  dom  ∫1 | 
						
							| 47 |  | nfcv | ⊢ Ⅎ 𝑥 𝑔 | 
						
							| 48 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 49 | 7 48 | nfcxfr | ⊢ Ⅎ 𝑥 𝐺 | 
						
							| 50 | 47 41 49 | nfbr | ⊢ Ⅎ 𝑥 𝑔  ∘r   ≤  𝐺 | 
						
							| 51 | 46 50 | nfan | ⊢ Ⅎ 𝑥 ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) | 
						
							| 52 | 45 51 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) | 
						
							| 53 | 38 52 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) ) | 
						
							| 54 |  | eldifi | ⊢ ( 𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 55 |  | i1ff | ⊢ ( 𝑓  ∈  dom  ∫1  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 56 | 27 55 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 57 | 56 | ffnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝑓  Fn  ℝ ) | 
						
							| 58 |  | i1ff | ⊢ ( 𝑔  ∈  dom  ∫1  →  𝑔 : ℝ ⟶ ℝ ) | 
						
							| 59 | 28 58 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝑔 : ℝ ⟶ ℝ ) | 
						
							| 60 | 59 | ffnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝑔  Fn  ℝ ) | 
						
							| 61 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 62 | 61 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ℝ  ∈  V ) | 
						
							| 63 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 64 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 65 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝑔 ‘ 𝑥 ) ) | 
						
							| 66 | 57 60 62 62 63 64 65 | ofval | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 67 | 54 66 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 68 |  | ffvelcdm | ⊢ ( ( 𝑓 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 69 | 56 54 68 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 70 |  | ffvelcdm | ⊢ ( ( 𝑔 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑔 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 71 | 59 54 70 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑔 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 72 | 69 71 | readdcld | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 73 | 72 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ∈  ℝ* ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ∈  ℝ* ) | 
						
							| 75 | 69 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 76 | 75 | rexrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 77 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 78 |  | ffvelcdm | ⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐻 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 79 | 30 54 78 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐻 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 80 | 77 79 | sselid | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 82 | 71 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 83 |  | 0red | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 84 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝑔  ∘r   ≤  𝐺 ) | 
						
							| 85 | 61 | a1i | ⊢ ( ( 𝜑  ∧  𝑔  Fn  ℝ )  →  ℝ  ∈  V ) | 
						
							| 86 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑔  Fn  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑔 ‘ 𝑥 )  ∈  V ) | 
						
							| 87 |  | ssun2 | ⊢ 𝐵  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 88 | 87 4 | sseqtrrid | ⊢ ( 𝜑  →  𝐵  ⊆  𝑈 ) | 
						
							| 89 | 88 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝑈 ) | 
						
							| 90 | 89 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝑈 ) | 
						
							| 91 | 90 11 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 92 | 12 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝐵 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 93 | 91 92 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 94 | 93 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑔  Fn  ℝ )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 95 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  Fn  ℝ )  →  𝑔  Fn  ℝ ) | 
						
							| 96 |  | dffn5 | ⊢ ( 𝑔  Fn  ℝ  ↔  𝑔  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 97 | 95 96 | sylib | ⊢ ( ( 𝜑  ∧  𝑔  Fn  ℝ )  →  𝑔  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 98 | 7 | a1i | ⊢ ( ( 𝜑  ∧  𝑔  Fn  ℝ )  →  𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) ) | 
						
							| 99 | 85 86 94 97 98 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑔  Fn  ℝ )  →  ( 𝑔  ∘r   ≤  𝐺  ↔  ∀ 𝑥  ∈  ℝ ( 𝑔 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) ) | 
						
							| 100 | 60 99 | syldan | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( 𝑔  ∘r   ≤  𝐺  ↔  ∀ 𝑥  ∈  ℝ ( 𝑔 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) ) | 
						
							| 101 | 84 100 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ∀ 𝑥  ∈  ℝ ( 𝑔 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 102 | 101 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑔 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 103 | 54 102 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑔 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 105 |  | eldifn | ⊢ ( 𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) )  →  ¬  𝑥  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ¬  𝑥  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 107 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 108 | 106 107 | sylnib | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ¬  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 109 |  | imnan | ⊢ ( ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  𝐵 )  ↔  ¬  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 110 | 108 109 | sylibr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  𝐵 ) ) | 
						
							| 111 | 110 | imp | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ¬  𝑥  ∈  𝐵 ) | 
						
							| 112 | 111 | iffalsed | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 113 | 104 112 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑥 )  ≤  0 ) | 
						
							| 114 | 82 83 75 113 | leadd2dd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  0 ) ) | 
						
							| 115 | 75 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 116 | 115 | addridd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  0 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 117 | 114 116 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ≤  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 118 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  𝑓  ∘r   ≤  𝐹 ) | 
						
							| 119 | 61 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ℝ )  →  ℝ  ∈  V ) | 
						
							| 120 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑓  Fn  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  ∈  V ) | 
						
							| 121 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 122 | 121 4 | sseqtrrid | ⊢ ( 𝜑  →  𝐴  ⊆  𝑈 ) | 
						
							| 123 | 122 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝑈 ) | 
						
							| 124 | 123 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝑈 ) | 
						
							| 125 | 124 11 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 126 | 12 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 127 | 125 126 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 128 | 127 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓  Fn  ℝ )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 129 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ℝ )  →  𝑓  Fn  ℝ ) | 
						
							| 130 |  | dffn5 | ⊢ ( 𝑓  Fn  ℝ  ↔  𝑓  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 131 | 129 130 | sylib | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ℝ )  →  𝑓  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 132 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ℝ )  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) | 
						
							| 133 | 119 120 128 131 132 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ℝ )  →  ( 𝑓  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) | 
						
							| 134 | 57 133 | syldan | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( 𝑓  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) | 
						
							| 135 | 118 134 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 136 | 135 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 137 | 54 136 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 138 | 137 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 139 | 122 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  𝐴  ⊆  𝑈 ) | 
						
							| 140 | 139 | sselda | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝑈 ) | 
						
							| 141 | 140 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 142 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 143 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 144 | 8 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) )  →  ( 𝐻 ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 145 | 142 143 144 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝐻 ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 146 | 54 145 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐻 ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 148 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 149 | 148 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 150 | 141 147 149 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑥 )  =  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 151 | 138 150 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ≤  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 152 | 74 76 81 117 151 | xrletrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ≤  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 153 | 73 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ∈  ℝ* ) | 
						
							| 154 | 71 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 155 | 154 | rexrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 156 | 80 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 157 | 69 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 158 |  | 0red | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 159 | 137 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 160 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 161 | 160 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 162 | 159 161 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ≤  0 ) | 
						
							| 163 | 157 158 154 162 | leadd1dd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ≤  ( 0  +  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 164 | 154 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 165 | 164 | addlidd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 0  +  ( 𝑔 ‘ 𝑥 ) )  =  ( 𝑔 ‘ 𝑥 ) ) | 
						
							| 166 | 163 165 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ≤  ( 𝑔 ‘ 𝑥 ) ) | 
						
							| 167 | 103 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 168 | 146 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 169 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  𝑈  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 170 | 169 | eleq2d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝑈  ↔  𝑥  ∈  ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 171 |  | elun | ⊢ ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) | 
						
							| 172 |  | biorf | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐵  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) ) | 
						
							| 173 | 171 172 | bitr4id | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 174 | 173 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 175 | 170 174 | bitrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝑈  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 176 | 175 | ifbid | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  =  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 177 | 168 176 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑥 )  =  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 178 | 167 177 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑥 )  ≤  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 179 | 153 155 156 166 178 | xrletrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ≤  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 180 | 152 179 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑔 ‘ 𝑥 ) )  ≤  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 181 | 67 180 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  ≤  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 182 | 181 | ex | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( 𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) )  →  ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  ≤  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 183 | 53 182 | ralrimi | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ∀ 𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  ≤  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 184 |  | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  ≤  ( 𝐻 ‘ 𝑥 ) | 
						
							| 185 |  | nfcv | ⊢ Ⅎ 𝑥 ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑦 ) | 
						
							| 186 |  | nfcv | ⊢ Ⅎ 𝑥  ≤ | 
						
							| 187 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 188 | 8 187 | nfcxfr | ⊢ Ⅎ 𝑥 𝐻 | 
						
							| 189 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 190 | 188 189 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) | 
						
							| 191 | 185 186 190 | nfbr | ⊢ Ⅎ 𝑥 ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) | 
						
							| 192 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  =  ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑦 ) ) | 
						
							| 193 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐻 ‘ 𝑥 )  =  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 194 | 192 193 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  ≤  ( 𝐻 ‘ 𝑥 )  ↔  ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) ) | 
						
							| 195 | 184 191 194 | cbvralw | ⊢ ( ∀ 𝑥  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑥 )  ≤  ( 𝐻 ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 196 | 183 195 | sylib | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ∀ 𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 197 | 196 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑓  ∘f   +  𝑔 ) ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 198 | 30 31 36 37 197 | itg2uba | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( ∫1 ‘ ( 𝑓  ∘f   +  𝑔 ) )  ≤  ( ∫2 ‘ 𝐻 ) ) | 
						
							| 199 | 29 198 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( ( ∫1 ‘ 𝑓 )  +  ( ∫1 ‘ 𝑔 ) )  ≤  ( ∫2 ‘ 𝐻 ) ) | 
						
							| 200 | 26 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( ∫1 ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 201 |  | itg1cl | ⊢ ( 𝑔  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑔 )  ∈  ℝ ) | 
						
							| 202 | 28 201 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( ∫1 ‘ 𝑔 )  ∈  ℝ ) | 
						
							| 203 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( ∫2 ‘ 𝐻 )  ∈  ℝ ) | 
						
							| 204 | 200 202 203 | leaddsub2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( ( ( ∫1 ‘ 𝑓 )  +  ( ∫1 ‘ 𝑔 ) )  ≤  ( ∫2 ‘ 𝐻 )  ↔  ( ∫1 ‘ 𝑔 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) ) ) ) | 
						
							| 205 | 199 204 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) ) )  →  ( ∫1 ‘ 𝑔 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) ) ) | 
						
							| 206 | 205 | anassrs | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  ( 𝑔  ∈  dom  ∫1  ∧  𝑔  ∘r   ≤  𝐺 ) )  →  ( ∫1 ‘ 𝑔 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) ) ) | 
						
							| 207 | 206 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  ∧  𝑔  ∈  dom  ∫1 )  →  ( 𝑔  ∘r   ≤  𝐺  →  ( ∫1 ‘ 𝑔 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) ) ) ) | 
						
							| 208 | 207 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐺  →  ( ∫1 ‘ 𝑔 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) ) ) ) | 
						
							| 209 | 93 7 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 210 | 209 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 211 | 24 26 | resubcld | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) )  ∈  ℝ ) | 
						
							| 212 | 211 | rexrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) )  ∈  ℝ* ) | 
						
							| 213 |  | itg2leub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) )  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐺 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐺  →  ( ∫1 ‘ 𝑔 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) ) ) ) ) | 
						
							| 214 | 210 212 213 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ( ∫2 ‘ 𝐺 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) )  ↔  ∀ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐺  →  ( ∫1 ‘ 𝑔 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) ) ) ) ) | 
						
							| 215 | 208 214 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ∫2 ‘ 𝐺 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫1 ‘ 𝑓 ) ) ) | 
						
							| 216 | 21 24 26 215 | lesubd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐹 ) )  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 217 | 216 | expr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 218 | 217 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 219 | 127 6 | fmptd | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 220 | 23 10 | resubcld | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 221 | 220 | rexrd | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ* ) | 
						
							| 222 |  | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐹 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) ) ) ) ) | 
						
							| 223 | 219 221 222 | syl2anc | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐹 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) ) ) ) ) | 
						
							| 224 | 218 223 | mpbird | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 225 |  | leaddsub | ⊢ ( ( ( ∫2 ‘ 𝐹 )  ∈  ℝ  ∧  ( ∫2 ‘ 𝐺 )  ∈  ℝ  ∧  ( ∫2 ‘ 𝐻 )  ∈  ℝ )  →  ( ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ≤  ( ∫2 ‘ 𝐻 )  ↔  ( ∫2 ‘ 𝐹 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 226 | 9 10 23 225 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ≤  ( ∫2 ‘ 𝐻 )  ↔  ( ∫2 ‘ 𝐹 )  ≤  ( ( ∫2 ‘ 𝐻 )  −  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 227 | 224 226 | mpbird | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ≤  ( ∫2 ‘ 𝐻 ) ) | 
						
							| 228 | 17 19 20 227 | xrletrid | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐻 )  =  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) |