| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2split.a | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 2 |  | itg2split.b | ⊢ ( 𝜑  →  𝐵  ∈  dom  vol ) | 
						
							| 3 |  | itg2split.i | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐴  ∩  𝐵 ) )  =  0 ) | 
						
							| 4 |  | itg2split.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 5 |  | itg2split.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 6 |  | itg2split.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 7 |  | itg2split.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 8 |  | itg2split.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 9 |  | itg2split.sf | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 10 |  | itg2split.sg | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝑓  ∈  dom  ∫1 ) | 
						
							| 12 |  | itg1cl | ⊢ ( 𝑓  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 14 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝐴  ∈  dom  vol ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 16 | 15 | i1fres | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 17 | 11 14 16 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 18 |  | itg1cl | ⊢ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 20 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝐵  ∈  dom  vol ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 22 | 21 | i1fres | ⊢ ( ( 𝑓  ∈  dom  ∫1  ∧  𝐵  ∈  dom  vol )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 23 | 11 20 22 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 24 |  | itg1cl | ⊢ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 26 | 19 25 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  +  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 27 | 9 10 | readdcld | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 29 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 30 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 31 | 1 30 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 32 | 29 31 | sstrid | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝐴  ∩  𝐵 )  ⊆  ℝ ) | 
						
							| 34 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( vol* ‘ ( 𝐴  ∩  𝐵 ) )  =  0 ) | 
						
							| 35 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 37 |  | fvex | ⊢ ( 𝑓 ‘ 𝑥 )  ∈  V | 
						
							| 38 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 39 | 37 38 | ifex | ⊢ if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ∈  V ) | 
						
							| 41 | 37 38 | ifex | ⊢ if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ∈  V ) | 
						
							| 43 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 44 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 45 | 36 40 42 43 44 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ) | 
						
							| 47 | 17 23 | i1fadd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ∈  dom  ∫1 ) | 
						
							| 48 | 46 47 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ∈  dom  ∫1 ) | 
						
							| 49 |  | i1ff | ⊢ ( 𝑓  ∈  dom  ∫1  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 50 | 11 49 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 51 |  | eldifi | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 52 |  | ffvelcdm | ⊢ ( ( 𝑓 : ℝ ⟶ ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 53 | 50 51 52 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 54 | 53 | leidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 56 |  | iftrue | ⊢ ( 𝑦  ∈  𝐴  →  if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 58 |  | eldifn | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) )  →  ¬  𝑦  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ¬  𝑦  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 60 |  | elin | ⊢ ( 𝑦  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 61 | 59 60 | sylnib | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ¬  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 62 |  | imnan | ⊢ ( ( 𝑦  ∈  𝐴  →  ¬  𝑦  ∈  𝐵 )  ↔  ¬  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 63 | 61 62 | sylibr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑦  ∈  𝐴  →  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ¬  𝑦  ∈  𝐵 ) | 
						
							| 65 |  | iffalse | ⊢ ( ¬  𝑦  ∈  𝐵  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  0 ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  0 ) | 
						
							| 67 | 57 66 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) )  =  ( ( 𝑓 ‘ 𝑦 )  +  0 ) ) | 
						
							| 68 | 53 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 70 | 69 | addridd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑓 ‘ 𝑦 )  +  0 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 71 | 67 70 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 72 | 55 71 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 73 | 54 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 74 |  | iftrue | ⊢ ( 𝑦  ∈  𝐵  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 76 | 73 75 | breqtrrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑦 )  ≤  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 77 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  𝑈  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 78 | 77 | eleq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑦  ∈  𝑈  ↔  𝑦  ∈  ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 79 |  | elun | ⊢ ( 𝑦  ∈  ( 𝐴  ∪  𝐵 )  ↔  ( 𝑦  ∈  𝐴  ∨  𝑦  ∈  𝐵 ) ) | 
						
							| 80 | 78 79 | bitrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑦  ∈  𝑈  ↔  ( 𝑦  ∈  𝐴  ∨  𝑦  ∈  𝐵 ) ) ) | 
						
							| 81 | 80 | notbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ¬  𝑦  ∈  𝑈  ↔  ¬  ( 𝑦  ∈  𝐴  ∨  𝑦  ∈  𝐵 ) ) ) | 
						
							| 82 |  | ioran | ⊢ ( ¬  ( 𝑦  ∈  𝐴  ∨  𝑦  ∈  𝐵 )  ↔  ( ¬  𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 83 | 81 82 | bitrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ¬  𝑦  ∈  𝑈  ↔  ( ¬  𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝐵 ) ) ) | 
						
							| 84 | 83 | biimpar | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ( ¬  𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝐵 ) )  →  ¬  𝑦  ∈  𝑈 ) | 
						
							| 85 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝑓  ∘r   ≤  𝐻 ) | 
						
							| 86 | 50 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝑓  Fn  ℝ ) | 
						
							| 87 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝑈 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 88 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 89 | 88 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝑈 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 90 | 87 89 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 91 | 90 8 | fmptd | ⊢ ( 𝜑  →  𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 92 | 91 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  ℝ ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝐻  Fn  ℝ ) | 
						
							| 94 | 35 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ℝ  ∈  V ) | 
						
							| 95 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 96 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ℝ )  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 97 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ℝ )  →  ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 98 | 86 93 94 94 95 96 97 | ofrfval | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝑓  ∘r   ≤  𝐻  ↔  ∀ 𝑦  ∈  ℝ ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) ) | 
						
							| 99 | 85 98 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ∀ 𝑦  ∈  ℝ ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 100 | 99 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ℝ )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 101 | 51 100 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝑈 )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝐻 ‘ 𝑦 ) ) | 
						
							| 103 | 51 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 104 |  | eldif | ⊢ ( 𝑦  ∈  ( ℝ  ∖  𝑈 )  ↔  ( 𝑦  ∈  ℝ  ∧  ¬  𝑦  ∈  𝑈 ) ) | 
						
							| 105 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 106 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 107 | 8 106 | nfcxfr | ⊢ Ⅎ 𝑥 𝐻 | 
						
							| 108 | 107 105 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) | 
						
							| 109 | 108 | nfeq1 | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 )  =  0 | 
						
							| 110 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐻 ‘ 𝑥 )  =  0  ↔  ( 𝐻 ‘ 𝑦 )  =  0 ) ) | 
						
							| 111 |  | eldif | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝑈 )  ↔  ( 𝑥  ∈  ℝ  ∧  ¬  𝑥  ∈  𝑈 ) ) | 
						
							| 112 | 8 | fvmpt2i | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝐻 ‘ 𝑥 )  =  (  I  ‘ if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) ) | 
						
							| 113 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝑈  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 114 | 113 | fveq2d | ⊢ ( ¬  𝑥  ∈  𝑈  →  (  I  ‘ if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) )  =  (  I  ‘ 0 ) ) | 
						
							| 115 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 116 |  | fvi | ⊢ ( 0  ∈  ℂ  →  (  I  ‘ 0 )  =  0 ) | 
						
							| 117 | 115 116 | ax-mp | ⊢ (  I  ‘ 0 )  =  0 | 
						
							| 118 | 114 117 | eqtrdi | ⊢ ( ¬  𝑥  ∈  𝑈  →  (  I  ‘ if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) )  =  0 ) | 
						
							| 119 | 112 118 | sylan9eq | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ¬  𝑥  ∈  𝑈 )  →  ( 𝐻 ‘ 𝑥 )  =  0 ) | 
						
							| 120 | 111 119 | sylbi | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝑈 )  →  ( 𝐻 ‘ 𝑥 )  =  0 ) | 
						
							| 121 | 105 109 110 120 | vtoclgaf | ⊢ ( 𝑦  ∈  ( ℝ  ∖  𝑈 )  →  ( 𝐻 ‘ 𝑦 )  =  0 ) | 
						
							| 122 | 104 121 | sylbir | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ¬  𝑦  ∈  𝑈 )  →  ( 𝐻 ‘ 𝑦 )  =  0 ) | 
						
							| 123 | 103 122 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝑈 )  →  ( 𝐻 ‘ 𝑦 )  =  0 ) | 
						
							| 124 | 102 123 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝑈 )  →  ( 𝑓 ‘ 𝑦 )  ≤  0 ) | 
						
							| 125 | 84 124 | syldan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ( ¬  𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝐵 ) )  →  ( 𝑓 ‘ 𝑦 )  ≤  0 ) | 
						
							| 126 | 125 | anassrs | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑦 )  ≤  0 ) | 
						
							| 127 | 65 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ∈  𝐵 )  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  0 ) | 
						
							| 128 | 126 127 | breqtrrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑦 )  ≤  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 129 | 76 128 | pm2.61dan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑦 )  ≤  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 130 |  | iffalse | ⊢ ( ¬  𝑦  ∈  𝐴  →  if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  0 ) | 
						
							| 131 | 130 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  →  if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  =  0 ) | 
						
							| 132 | 131 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  →  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) )  =  ( 0  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 133 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 134 |  | ifcl | ⊢ ( ( ( 𝑓 ‘ 𝑦 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  ∈  ℝ ) | 
						
							| 135 | 53 133 134 | sylancl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  ∈  ℝ ) | 
						
							| 136 | 135 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  ∈  ℂ ) | 
						
							| 137 | 136 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  →  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  ∈  ℂ ) | 
						
							| 138 | 137 | addlidd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  →  ( 0  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) )  =  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 139 | 132 138 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  →  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) )  =  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 140 | 129 139 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  ∧  ¬  𝑦  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 141 | 72 140 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 142 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 143 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 144 | 142 143 | ifbieq1d | ⊢ ( 𝑥  =  𝑦  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  =  if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 145 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 146 | 145 143 | ifbieq1d | ⊢ ( 𝑥  =  𝑦  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  =  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) | 
						
							| 147 | 144 146 | oveq12d | ⊢ ( 𝑥  =  𝑦  →  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  =  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 148 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 149 |  | ovex | ⊢ ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) )  ∈  V | 
						
							| 150 | 147 148 149 | fvmpt | ⊢ ( 𝑦  ∈  ℝ  →  ( ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑦 )  =  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 151 | 103 150 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑦 )  =  ( if ( 𝑦  ∈  𝐴 ,  ( 𝑓 ‘ 𝑦 ) ,  0 )  +  if ( 𝑦  ∈  𝐵 ,  ( 𝑓 ‘ 𝑦 ) ,  0 ) ) ) | 
						
							| 152 | 141 151 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑦  ∈  ( ℝ  ∖  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑓 ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ‘ 𝑦 ) ) | 
						
							| 153 | 11 33 34 48 152 | itg1lea | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ 𝑓 )  ≤  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 154 | 46 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 155 | 17 23 | itg1add | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  +  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 156 | 154 155 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  +  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) )  =  ( ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  +  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 157 | 153 156 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  +  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) ) ) | 
						
							| 158 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 159 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 160 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 161 | 160 4 | sseqtrrid | ⊢ ( 𝜑  →  𝐴  ⊆  𝑈 ) | 
						
							| 162 | 161 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝑈 ) | 
						
							| 163 | 162 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝑈 ) | 
						
							| 164 | 163 87 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 165 | 88 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 166 | 164 165 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 167 | 166 6 | fmptd | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 169 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 170 |  | nfv | ⊢ Ⅎ 𝑥 𝑓  ∈  dom  ∫1 | 
						
							| 171 |  | nfcv | ⊢ Ⅎ 𝑥 𝑓 | 
						
							| 172 |  | nfcv | ⊢ Ⅎ 𝑥  ∘r   ≤ | 
						
							| 173 | 171 172 107 | nfbr | ⊢ Ⅎ 𝑥 𝑓  ∘r   ≤  𝐻 | 
						
							| 174 | 170 173 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) | 
						
							| 175 | 169 174 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) ) | 
						
							| 176 | 14 30 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 177 | 176 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 178 | 35 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ℝ  ∈  V ) | 
						
							| 179 | 37 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  ∈  V ) | 
						
							| 180 | 90 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 181 | 49 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝑓 : ℝ ⟶ ℝ ) | 
						
							| 182 | 181 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝑓  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 183 | 8 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  𝐻  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) ) | 
						
							| 184 | 178 179 180 182 183 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  𝐻  ↔  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) ) | 
						
							| 185 | 184 | biimpd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  𝐻  →  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) ) | 
						
							| 186 | 185 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ∀ 𝑥  ∈  ℝ ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 187 | 186 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 188 | 177 187 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 189 | 162 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝑈 ) | 
						
							| 190 | 189 | iftrued | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 191 | 188 190 | breqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ≤  𝐶 ) | 
						
							| 192 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 193 | 192 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 194 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 195 | 194 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 196 | 191 193 195 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 197 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 198 | 197 | a1i | ⊢ ( ¬  𝑥  ∈  𝐴  →  0  ≤  0 ) | 
						
							| 199 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  =  0 ) | 
						
							| 200 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 201 | 198 199 200 | 3brtr4d | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 202 | 201 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 203 | 196 202 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 204 | 203 | a1d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝑥  ∈  ℝ  →  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) | 
						
							| 205 | 175 204 | ralrimi | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) | 
						
							| 206 | 6 | a1i | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) | 
						
							| 207 | 36 40 166 43 206 | ofrfval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) | 
						
							| 208 | 207 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) | 
						
							| 209 | 205 208 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐹 ) | 
						
							| 210 |  | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 211 | 168 17 209 210 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 212 |  | ssun2 | ⊢ 𝐵  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 213 | 212 4 | sseqtrrid | ⊢ ( 𝜑  →  𝐵  ⊆  𝑈 ) | 
						
							| 214 | 213 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝑈 ) | 
						
							| 215 | 214 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝑈 ) | 
						
							| 216 | 215 87 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 217 | 88 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝐵 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 218 | 216 217 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 219 | 218 7 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 220 | 219 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 221 |  | mblss | ⊢ ( 𝐵  ∈  dom  vol  →  𝐵  ⊆  ℝ ) | 
						
							| 222 | 20 221 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  𝐵  ⊆  ℝ ) | 
						
							| 223 | 222 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  ℝ ) | 
						
							| 224 | 223 187 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑥 )  ≤  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 ) ) | 
						
							| 225 | 214 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝑈 ) | 
						
							| 226 | 225 | iftrued | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ∈  𝑈 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 227 | 224 226 | breqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑥 )  ≤  𝐶 ) | 
						
							| 228 |  | iftrue | ⊢ ( 𝑥  ∈  𝐵  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 229 | 228 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 230 |  | iftrue | ⊢ ( 𝑥  ∈  𝐵  →  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 231 | 230 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 232 | 227 229 231 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 233 | 197 | a1i | ⊢ ( ¬  𝑥  ∈  𝐵  →  0  ≤  0 ) | 
						
							| 234 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐵  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  =  0 ) | 
						
							| 235 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐵  →  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 236 | 233 234 235 | 3brtr4d | ⊢ ( ¬  𝑥  ∈  𝐵  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 237 | 236 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  ∧  ¬  𝑥  ∈  𝐵 )  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 238 | 232 237 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 239 | 238 | a1d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝑥  ∈  ℝ  →  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) ) | 
						
							| 240 | 175 239 | ralrimi | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) | 
						
							| 241 | 7 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) ) | 
						
							| 242 | 36 42 218 44 241 | ofrfval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐺  ↔  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) ) | 
						
							| 243 | 242 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐺  ↔  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  0 ) ) ) | 
						
							| 244 | 240 243 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐺 ) | 
						
							| 245 |  | itg2ub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) )  ∘r   ≤  𝐺 )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 246 | 220 23 244 245 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  ≤  ( ∫2 ‘ 𝐺 ) ) | 
						
							| 247 | 19 25 158 159 211 246 | le2addd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) )  +  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐵 ,  ( 𝑓 ‘ 𝑥 ) ,  0 ) ) ) )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 248 | 13 26 28 157 247 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ∫1  ∧  𝑓  ∘r   ≤  𝐻 ) )  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) | 
						
							| 249 | 248 | expr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ∫1 )  →  ( 𝑓  ∘r   ≤  𝐻  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 250 | 249 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐻  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) ) | 
						
							| 251 | 27 | rexrd | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ* ) | 
						
							| 252 |  | itg2leub | ⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐻 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐻  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) ) ) | 
						
							| 253 | 91 251 252 | syl2anc | ⊢ ( 𝜑  →  ( ( ∫2 ‘ 𝐻 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐻  →  ( ∫1 ‘ 𝑓 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) ) ) | 
						
							| 254 | 250 253 | mpbird | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐻 )  ≤  ( ( ∫2 ‘ 𝐹 )  +  ( ∫2 ‘ 𝐺 ) ) ) |