Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
2 |
1
|
itg2lcl |
⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* |
3 |
1
|
itg2lr |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) |
5 |
|
supxrub |
⊢ ( ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* ∧ ( ∫1 ‘ 𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) → ( ∫1 ‘ 𝐺 ) ≤ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
6 |
2 4 5
|
sylancr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ≤ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
7 |
1
|
itg2val |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
9 |
6 8
|
breqtrrd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ≤ ( ∫2 ‘ 𝐹 ) ) |