| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  =  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } | 
						
							| 2 | 1 | itg2lcl | ⊢ { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  ⊆  ℝ* | 
						
							| 3 | 1 | itg2lr | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐺 )  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺  ∈  dom  ∫1  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐺 )  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ) | 
						
							| 5 |  | supxrub | ⊢ ( ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  ⊆  ℝ*  ∧  ( ∫1 ‘ 𝐺 )  ∈  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } )  →  ( ∫1 ‘ 𝐺 )  ≤  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 6 | 2 4 5 | sylancr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺  ∈  dom  ∫1  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐺 )  ≤  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 7 | 1 | itg2val | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  =  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺  ∈  dom  ∫1  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ∫2 ‘ 𝐹 )  =  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 9 | 6 8 | breqtrrd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝐺  ∈  dom  ∫1  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ 𝐺 )  ≤  ( ∫2 ‘ 𝐹 ) ) |