Metamath Proof Explorer


Theorem itg2ub

Description: The integral of a nonnegative real function F is an upper bound on the integrals of all simple functions G dominated by F . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2ub ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ( ∫1𝐺 ) ≤ ( ∫2𝐹 ) )

Proof

Step Hyp Ref Expression
1 eqid { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) }
2 1 itg2lcl { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } ⊆ ℝ*
3 1 itg2lr ( ( 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ( ∫1𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } )
4 3 3adant1 ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ( ∫1𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } )
5 supxrub ( ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } ⊆ ℝ* ∧ ( ∫1𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } ) → ( ∫1𝐺 ) ≤ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } , ℝ* , < ) )
6 2 4 5 sylancr ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ( ∫1𝐺 ) ≤ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } , ℝ* , < ) )
7 1 itg2val ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } , ℝ* , < ) )
8 7 3ad2ant1 ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ( ∫2𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) } , ℝ* , < ) )
9 6 8 breqtrrd ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ( ∫1𝐺 ) ≤ ( ∫2𝐹 ) )