| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2uba.1 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 2 |  | itg2uba.2 | ⊢ ( 𝜑  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 3 |  | itg2uba.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 4 |  | itg2uba.4 | ⊢ ( 𝜑  →  ( vol* ‘ 𝐴 )  =  0 ) | 
						
							| 5 |  | itg2uba.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 6 |  | itg1cl | ⊢ ( 𝐺  ∈  dom  ∫1  →  ( ∫1 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 8 | 7 | rexrd | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝐺 )  ∈  ℝ* ) | 
						
							| 9 |  | nulmbl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ( vol* ‘ 𝐴 )  =  0 )  →  𝐴  ∈  dom  vol ) | 
						
							| 10 | 3 4 9 | syl2anc | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 11 |  | cmmbl | ⊢ ( 𝐴  ∈  dom  vol  →  ( ℝ  ∖  𝐴 )  ∈  dom  vol ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( ℝ  ∖  𝐴 )  ∈  dom  vol ) | 
						
							| 13 |  | ifnot | ⊢ if ( ¬  𝑥  ∈  𝐴 ,  ( 𝐺 ‘ 𝑥 ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 14 |  | eldif | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝐴 )  ↔  ( 𝑥  ∈  ℝ  ∧  ¬  𝑥  ∈  𝐴 ) ) | 
						
							| 15 | 14 | baibr | ⊢ ( 𝑥  ∈  ℝ  →  ( ¬  𝑥  ∈  𝐴  ↔  𝑥  ∈  ( ℝ  ∖  𝐴 ) ) ) | 
						
							| 16 | 15 | ifbid | ⊢ ( 𝑥  ∈  ℝ  →  if ( ¬  𝑥  ∈  𝐴 ,  ( 𝐺 ‘ 𝑥 ) ,  0 )  =  if ( 𝑥  ∈  ( ℝ  ∖  𝐴 ) ,  ( 𝐺 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 17 | 13 16 | eqtr3id | ⊢ ( 𝑥  ∈  ℝ  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  =  if ( 𝑥  ∈  ( ℝ  ∖  𝐴 ) ,  ( 𝐺 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 18 | 17 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( ℝ  ∖  𝐴 ) ,  ( 𝐺 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 19 | 18 | i1fres | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  ( ℝ  ∖  𝐴 )  ∈  dom  vol )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  ∈  dom  ∫1 ) | 
						
							| 20 | 2 12 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  ∈  dom  ∫1 ) | 
						
							| 21 |  | itg1cl | ⊢ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  ℝ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  ℝ ) | 
						
							| 23 | 22 | rexrd | ⊢ ( 𝜑  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) )  ∈  ℝ* ) | 
						
							| 24 |  | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 25 | 1 24 | syl | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 26 |  | i1ff | ⊢ ( 𝐺  ∈  dom  ∫1  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 27 | 2 26 | syl | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 28 |  | eldifi | ⊢ ( 𝑦  ∈  ( ℝ  ∖  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 29 |  | ffvelcdm | ⊢ ( ( 𝐺 : ℝ ⟶ ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝐺 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 30 | 27 28 29 | syl2an | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 31 | 30 | leidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐺 ‘ 𝑦 )  ≤  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 32 |  | eldif | ⊢ ( 𝑦  ∈  ( ℝ  ∖  𝐴 )  ↔  ( 𝑦  ∈  ℝ  ∧  ¬  𝑦  ∈  𝐴 ) ) | 
						
							| 33 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 35 | 33 34 | ifbieq2d | ⊢ ( 𝑥  =  𝑦  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  =  if ( 𝑦  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 37 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 38 |  | fvex | ⊢ ( 𝐺 ‘ 𝑦 )  ∈  V | 
						
							| 39 | 37 38 | ifex | ⊢ if ( 𝑦  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑦 ) )  ∈  V | 
						
							| 40 | 35 36 39 | fvmpt | ⊢ ( 𝑦  ∈  ℝ  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 )  =  if ( 𝑦  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 41 |  | iffalse | ⊢ ( ¬  𝑦  ∈  𝐴  →  if ( 𝑦  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑦 ) )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 42 | 40 41 | sylan9eq | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ¬  𝑦  ∈  𝐴 )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 43 | 32 42 | sylbi | ⊢ ( 𝑦  ∈  ( ℝ  ∖  𝐴 )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℝ  ∖  𝐴 ) )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 45 | 31 44 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℝ  ∖  𝐴 ) )  →  ( 𝐺 ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) | 
						
							| 46 | 2 3 4 20 45 | itg1lea | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝐺 )  ≤  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 47 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  =  0 ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  =  0 ) | 
						
							| 49 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 50 |  | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 51 | 49 50 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 52 | 51 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  0  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 54 | 48 53 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 55 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 57 | 14 5 | sylan2br | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ¬  𝑥  ∈  𝐴 ) )  →  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 58 | 57 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 59 | 56 58 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 60 | 54 59 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 61 | 60 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 62 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 63 | 62 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 64 |  | fvex | ⊢ ( 𝐺 ‘ 𝑥 )  ∈  V | 
						
							| 65 | 37 64 | ifex | ⊢ if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  ∈  V | 
						
							| 66 | 65 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  ∈  V ) | 
						
							| 67 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  V ) | 
						
							| 68 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 69 | 1 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 70 | 63 66 67 68 69 | ofrfval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 71 | 61 70 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  ∘r   ≤  𝐹 ) | 
						
							| 72 |  | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  ∈  dom  ∫1  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) )  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 73 | 1 20 71 72 | syl3anc | ⊢ ( 𝜑  →  ( ∫1 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  0 ,  ( 𝐺 ‘ 𝑥 ) ) ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 74 | 8 23 25 46 73 | xrletrd | ⊢ ( 𝜑  →  ( ∫1 ‘ 𝐺 )  ≤  ( ∫2 ‘ 𝐹 ) ) |