| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2val.1 | ⊢ 𝐿  =  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } | 
						
							| 2 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 3 | 2 | supex | ⊢ sup ( 𝐿 ,  ℝ* ,   <  )  ∈  V | 
						
							| 4 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 5 |  | ovex | ⊢ ( 0 [,] +∞ )  ∈  V | 
						
							| 6 |  | breq2 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑔  ∘r   ≤  𝑓  ↔  𝑔  ∘r   ≤  𝐹 ) ) | 
						
							| 7 | 6 | anbi1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  ↔  ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) ) ) | 
						
							| 8 | 7 | rexbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) )  ↔  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) ) ) | 
						
							| 9 | 8 | abbidv | ⊢ ( 𝑓  =  𝐹  →  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  =  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝐹  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ) | 
						
							| 10 | 9 1 | eqtr4di | ⊢ ( 𝑓  =  𝐹  →  { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) }  =  𝐿 ) | 
						
							| 11 | 10 | supeq1d | ⊢ ( 𝑓  =  𝐹  →  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  )  =  sup ( 𝐿 ,  ℝ* ,   <  ) ) | 
						
							| 12 |  | df-itg2 | ⊢ ∫2  =  ( 𝑓  ∈  ( ( 0 [,] +∞ )  ↑m  ℝ )  ↦  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 13 | 3 4 5 11 12 | fvmptmap | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  =  sup ( 𝐿 ,  ℝ* ,   <  ) ) |