| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgadd.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | itgadd.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 |  | itgadd.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝑉 ) | 
						
							| 4 |  | itgadd.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 5 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 7 | 6 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 8 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 10 | 9 3 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 11 | 7 10 | readdd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ℜ ‘ 𝐵 )  +  ( ℜ ‘ 𝐶 ) ) ) | 
						
							| 12 | 11 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥  =  ∫ 𝐴 ( ( ℜ ‘ 𝐵 )  +  ( ℜ ‘ 𝐶 ) )  d 𝑥 ) | 
						
							| 13 | 7 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 14 | 7 | iblcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) ) | 
						
							| 15 | 2 14 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 17 | 10 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 18 | 10 | iblcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐶 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐶 ) )  ∈  𝐿1 ) ) ) | 
						
							| 19 | 4 18 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐶 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐶 ) )  ∈  𝐿1 ) ) | 
						
							| 20 | 19 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐶 ) )  ∈  𝐿1 ) | 
						
							| 21 | 13 16 17 20 13 17 | itgaddlem2 | ⊢ ( 𝜑  →  ∫ 𝐴 ( ( ℜ ‘ 𝐵 )  +  ( ℜ ‘ 𝐶 ) )  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥 ) ) | 
						
							| 22 | 12 21 | eqtrd | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥 ) ) | 
						
							| 23 | 7 10 | imaddd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ℑ ‘ 𝐵 )  +  ( ℑ ‘ 𝐶 ) ) ) | 
						
							| 24 | 23 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℑ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥  =  ∫ 𝐴 ( ( ℑ ‘ 𝐵 )  +  ( ℑ ‘ 𝐶 ) )  d 𝑥 ) | 
						
							| 25 | 7 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 26 | 15 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 27 | 10 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 28 | 19 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐶 ) )  ∈  𝐿1 ) | 
						
							| 29 | 25 26 27 28 25 27 | itgaddlem2 | ⊢ ( 𝜑  →  ∫ 𝐴 ( ( ℑ ‘ 𝐵 )  +  ( ℑ ‘ 𝐶 ) )  d 𝑥  =  ( ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  +  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) | 
						
							| 30 | 24 29 | eqtrd | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℑ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥  =  ( ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  +  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝜑  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥 )  =  ( i  ·  ( ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  +  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) ) | 
						
							| 32 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  i  ∈  ℂ ) | 
						
							| 34 | 25 26 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  ∈  ℂ ) | 
						
							| 35 | 27 28 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥  ∈  ℂ ) | 
						
							| 36 | 33 34 35 | adddid | ⊢ ( 𝜑  →  ( i  ·  ( ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  +  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) )  =  ( ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) ) | 
						
							| 37 | 31 36 | eqtrd | ⊢ ( 𝜑  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥 )  =  ( ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) ) | 
						
							| 38 | 22 37 | oveq12d | ⊢ ( 𝜑  →  ( ∫ 𝐴 ( ℜ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥 ) )  =  ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥 )  +  ( ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) ) ) | 
						
							| 39 | 13 16 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  ∈  ℂ ) | 
						
							| 40 | 17 20 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥  ∈  ℂ ) | 
						
							| 41 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  ∈  ℂ )  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  ∈  ℂ ) | 
						
							| 42 | 32 34 41 | sylancr | ⊢ ( 𝜑  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  ∈  ℂ ) | 
						
							| 43 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥  ∈  ℂ )  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 )  ∈  ℂ ) | 
						
							| 44 | 32 35 43 | sylancr | ⊢ ( 𝜑  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 )  ∈  ℂ ) | 
						
							| 45 | 39 40 42 44 | add4d | ⊢ ( 𝜑  →  ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥 )  +  ( ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) )  =  ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) )  +  ( ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) ) ) | 
						
							| 46 | 38 45 | eqtrd | ⊢ ( 𝜑  →  ( ∫ 𝐴 ( ℜ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥 ) )  =  ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) )  +  ( ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) ) ) | 
						
							| 47 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  +  𝐶 )  ∈  V ) | 
						
							| 48 | 1 2 3 4 | ibladd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝐶 ) )  ∈  𝐿1 ) | 
						
							| 49 | 47 48 | itgcnval | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐵  +  𝐶 )  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ ( 𝐵  +  𝐶 ) )  d 𝑥 ) ) ) | 
						
							| 50 | 1 2 | itgcnval | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) ) | 
						
							| 51 | 3 4 | itgcnval | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) ) | 
						
							| 52 | 50 51 | oveq12d | ⊢ ( 𝜑  →  ( ∫ 𝐴 𝐵  d 𝑥  +  ∫ 𝐴 𝐶  d 𝑥 )  =  ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) )  +  ( ∫ 𝐴 ( ℜ ‘ 𝐶 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐶 )  d 𝑥 ) ) ) ) | 
						
							| 53 | 46 49 52 | 3eqtr4d | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐵  +  𝐶 )  d 𝑥  =  ( ∫ 𝐴 𝐵  d 𝑥  +  ∫ 𝐴 𝐶  d 𝑥 ) ) |