Step |
Hyp |
Ref |
Expression |
1 |
|
itgadd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
itgadd.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
3 |
|
itgadd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
itgadd.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
5 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
7 |
6 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
8 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
10 |
9 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
11 |
7 10
|
readdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) |
12 |
11
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ∫ 𝐴 ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) d 𝑥 ) |
13 |
7
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
14 |
7
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
15 |
2 14
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
17 |
10
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
18 |
10
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) ) ) |
19 |
4 18
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) ) |
20 |
19
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ) |
21 |
13 16 17 20 13 17
|
itgaddlem2 |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) ) |
22 |
12 21
|
eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) ) |
23 |
7 10
|
imaddd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) |
24 |
23
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ∫ 𝐴 ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) d 𝑥 ) |
25 |
7
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
26 |
15
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
27 |
10
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
28 |
19
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) |
29 |
25 26 27 28 25 27
|
itgaddlem2 |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) |
30 |
24 29
|
eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) = ( i · ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
32 |
|
ax-icn |
⊢ i ∈ ℂ |
33 |
32
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
34 |
25 26
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
35 |
27 28
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) |
36 |
33 34 35
|
adddid |
⊢ ( 𝜑 → ( i · ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) = ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
37 |
31 36
|
eqtrd |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) = ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
38 |
22 37
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) + ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
39 |
13 16
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
40 |
17 20
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) |
41 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
42 |
32 34 41
|
sylancr |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
43 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ∈ ℂ ) |
44 |
32 35 43
|
sylancr |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ∈ ℂ ) |
45 |
39 40 42 44
|
add4d |
⊢ ( 𝜑 → ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) + ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
46 |
38 45
|
eqtrd |
⊢ ( 𝜑 → ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
47 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ V ) |
48 |
1 2 3 4
|
ibladd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |
49 |
47 48
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) ) |
50 |
1 2
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
51 |
3 4
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
52 |
50 51
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
53 |
46 49 52
|
3eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |