| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgadd.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | itgadd.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 |  | itgadd.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝑉 ) | 
						
							| 4 |  | itgadd.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 5 |  | itgadd.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | itgadd.6 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 7 |  | itgadd.7 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 8 |  | itgadd.8 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐶 ) | 
						
							| 9 | 5 6 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  +  𝐶 )  ∈  ℝ ) | 
						
							| 10 | 1 2 3 4 | ibladd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝐶 ) )  ∈  𝐿1 ) | 
						
							| 11 | 5 6 7 8 | addge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( 𝐵  +  𝐶 ) ) | 
						
							| 12 | 9 10 11 | itgposval | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐵  +  𝐶 )  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 ) ) ) ) | 
						
							| 13 | 5 2 7 | itgposval | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) ) | 
						
							| 14 | 6 4 8 | itgposval | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) ) | 
						
							| 15 | 13 14 | oveq12d | ⊢ ( 𝜑  →  ( ∫ 𝐴 𝐵  d 𝑥  +  ∫ 𝐴 𝐶  d 𝑥 )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) ) ) | 
						
							| 16 | 5 7 | iblpos | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 17 | 2 16 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 19 | 18 5 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 20 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 22 |  | rembl | ⊢ ℝ  ∈  dom  vol | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  dom  vol ) | 
						
							| 24 |  | elrege0 | ⊢ ( 𝐵  ∈  ( 0 [,) +∞ )  ↔  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) ) | 
						
							| 25 | 5 7 24 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 26 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 27 | 26 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,) +∞ ) ) | 
						
							| 28 | 25 27 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 30 |  | eldifn | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝐴 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 32 | 31 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  =  0 ) | 
						
							| 33 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  =  𝐵 ) | 
						
							| 34 | 33 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 35 | 34 18 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 36 | 21 23 29 32 35 | mbfss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 37 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 38 | 37 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 39 | 17 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 40 |  | elrege0 | ⊢ ( 𝐶  ∈  ( 0 [,) +∞ )  ↔  ( 𝐶  ∈  ℝ  ∧  0  ≤  𝐶 ) ) | 
						
							| 41 | 6 8 40 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ( 0 [,) +∞ ) ) | 
						
							| 42 | 41 27 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 44 | 31 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 45 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 46 | 45 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 47 | 6 8 | iblpos | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 48 | 4 47 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 49 | 48 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 50 | 46 49 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 51 | 21 23 43 44 50 | mbfss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 52 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 53 | 52 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 54 | 48 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 55 | 36 38 39 51 53 54 | itg2add | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) ) ) | 
						
							| 56 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 57 | 56 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 58 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) | 
						
							| 59 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) | 
						
							| 60 | 57 37 52 58 59 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) ) | 
						
							| 61 | 33 45 | oveq12d | ⊢ ( 𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  ( 𝐵  +  𝐶 ) ) | 
						
							| 62 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 )  =  ( 𝐵  +  𝐶 ) ) | 
						
							| 63 | 61 62 | eqtr4d | ⊢ ( 𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 ) ) | 
						
							| 64 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  =  0 ) | 
						
							| 65 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 66 | 64 65 | oveq12d | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  ( 0  +  0 ) ) | 
						
							| 67 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 68 | 66 67 | eqtrdi | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  0 ) | 
						
							| 69 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 )  =  0 ) | 
						
							| 70 | 68 69 | eqtr4d | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 ) ) | 
						
							| 71 | 63 70 | pm2.61i | ⊢ ( if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 ) | 
						
							| 72 | 71 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 ) ) | 
						
							| 73 | 60 72 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 ) ) ) | 
						
							| 74 | 73 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 ) ) ) ) | 
						
							| 75 | 15 55 74 | 3eqtr2d | ⊢ ( 𝜑  →  ( ∫ 𝐴 𝐵  d 𝑥  +  ∫ 𝐴 𝐶  d 𝑥 )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐵  +  𝐶 ) ,  0 ) ) ) ) | 
						
							| 76 | 12 75 | eqtr4d | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐵  +  𝐶 )  d 𝑥  =  ( ∫ 𝐴 𝐵  d 𝑥  +  ∫ 𝐴 𝐶  d 𝑥 ) ) |