| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcn.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
itgcn.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
itgcn.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 4 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 6 |
5 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 7 |
6
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 8 |
6
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 9 |
|
elrege0 |
⊢ ( ( abs ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) |
| 10 |
7 8 9
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
| 11 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 13 |
10 12
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 15 |
14
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 16 |
5 1
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 17 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 19 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 21 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 22 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 24 |
23
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = 0 ) |
| 25 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = ( abs ‘ 𝐵 ) ) |
| 26 |
25
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) |
| 27 |
1 2
|
iblabs |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 28 |
7 8
|
iblpos |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 29 |
27 28
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
| 30 |
29
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ) |
| 31 |
26 30
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 32 |
18 20 21 24 31
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 33 |
29
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 34 |
15 32 33 3
|
itg2cn |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
| 35 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → 𝑢 ⊆ 𝐴 ) |
| 36 |
35
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝑢 ) → 𝑥 ∈ 𝐴 ) |
| 37 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 38 |
36 37
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝑢 ) → 𝐵 ∈ ℂ ) |
| 39 |
38
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝑢 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 40 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → 𝑢 ∈ dom vol ) |
| 41 |
37
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 42 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 43 |
35 40 41 42
|
iblss |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ 𝑢 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 44 |
38
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝑢 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 45 |
39 43 44
|
itgposval |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) |
| 46 |
35
|
sseld |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ 𝑢 → 𝑥 ∈ 𝐴 ) ) |
| 47 |
46
|
pm4.71d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ 𝑢 ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 48 |
47
|
ifbid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴 ) , ( abs ‘ 𝐵 ) , 0 ) ) |
| 49 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴 ) , ( abs ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) |
| 50 |
48 49
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 51 |
50
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) ) |
| 52 |
51
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) ) ) |
| 53 |
45 52
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) ) ) |
| 54 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝑢 |
| 55 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
| 57 |
54 55 56
|
nfif |
⊢ Ⅎ 𝑥 if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) |
| 58 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) |
| 59 |
|
elequ1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑢 ↔ 𝑥 ∈ 𝑢 ) ) |
| 60 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) ) |
| 61 |
59 60
|
ifbieq1d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) = if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) ) |
| 62 |
57 58 61
|
cbvmpt |
⊢ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) ) |
| 63 |
|
fvex |
⊢ ( abs ‘ 𝐵 ) ∈ V |
| 64 |
|
c0ex |
⊢ 0 ∈ V |
| 65 |
63 64
|
ifex |
⊢ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ V |
| 66 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 67 |
66
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 68 |
65 67
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 69 |
68
|
ifeq1d |
⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 70 |
69
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 71 |
62 70
|
eqtri |
⊢ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 72 |
71
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) ) |
| 73 |
53 72
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) ) |
| 74 |
73
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ↔ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
| 75 |
74
|
biimprd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) |
| 76 |
75
|
imim2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ( ( vol ‘ 𝑢 ) < 𝑑 → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) |
| 77 |
76
|
expr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ dom vol ) → ( 𝑢 ⊆ 𝐴 → ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ( ( vol ‘ 𝑢 ) < 𝑑 → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) ) |
| 78 |
77
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ dom vol ) → ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ( 𝑢 ⊆ 𝐴 → ( ( vol ‘ 𝑢 ) < 𝑑 → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) ) |
| 79 |
78
|
imp4a |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ dom vol ) → ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) |
| 80 |
79
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) |
| 81 |
80
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) |
| 82 |
34 81
|
mpd |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) |