| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgcnlem.r | ⊢ 𝑅  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 2 |  | itgcnlem.s | ⊢ 𝑆  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 3 |  | itgcnlem.t | ⊢ 𝑇  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 4 |  | itgcnlem.u | ⊢ 𝑈  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 5 |  | itgcnlem.v | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 6 |  | itgcnlem.i | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 7 |  | eqid | ⊢ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 8 | 7 | dfitg | ⊢ ∫ 𝐴 𝐵  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 9 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 10 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑘  =  3  →  ( i ↑ 𝑘 )  =  ( i ↑ 3 ) ) | 
						
							| 12 |  | i3 | ⊢ ( i ↑ 3 )  =  - i | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝑘  =  3  →  ( i ↑ 𝑘 )  =  - i ) | 
						
							| 14 | 12 | itgvallem | ⊢ ( 𝑘  =  3  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) ) ) | 
						
							| 15 | 13 14 | oveq12d | ⊢ ( 𝑘  =  3  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( - i  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) ) ) ) | 
						
							| 16 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  i  ∈  ℂ ) | 
						
							| 18 |  | expcl | ⊢ ( ( i  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 19 | 17 18 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 20 |  | nn0z | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℤ ) | 
						
							| 21 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 22 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 23 | 21 22 6 5 | iblitg | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 24 | 23 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℂ ) | 
						
							| 25 | 20 24 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℂ ) | 
						
							| 26 | 19 25 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  ∈  ℂ ) | 
						
							| 27 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑘  =  2  →  ( i ↑ 𝑘 )  =  ( i ↑ 2 ) ) | 
						
							| 29 |  | i2 | ⊢ ( i ↑ 2 )  =  - 1 | 
						
							| 30 | 28 29 | eqtrdi | ⊢ ( 𝑘  =  2  →  ( i ↑ 𝑘 )  =  - 1 ) | 
						
							| 31 | 29 | itgvallem | ⊢ ( 𝑘  =  2  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) ) | 
						
							| 32 | 30 31 | oveq12d | ⊢ ( 𝑘  =  2  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( - 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) ) ) | 
						
							| 33 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑘  =  1  →  ( i ↑ 𝑘 )  =  ( i ↑ 1 ) ) | 
						
							| 35 |  | exp1 | ⊢ ( i  ∈  ℂ  →  ( i ↑ 1 )  =  i ) | 
						
							| 36 | 16 35 | ax-mp | ⊢ ( i ↑ 1 )  =  i | 
						
							| 37 | 34 36 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( i ↑ 𝑘 )  =  i ) | 
						
							| 38 | 36 | itgvallem | ⊢ ( 𝑘  =  1  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  i ) ) ,  0 ) ) ) ) | 
						
							| 39 | 37 38 | oveq12d | ⊢ ( 𝑘  =  1  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( i  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  i ) ) ,  0 ) ) ) ) ) | 
						
							| 40 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 41 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 42 | 6 41 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 43 | 42 5 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 44 | 43 | div1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  /  1 )  =  𝐵 ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐵  /  1 ) )  =  ( ℜ ‘ 𝐵 ) ) | 
						
							| 46 | 45 | ibllem | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 47 | 46 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) ) ) | 
						
							| 49 | 1 48 | eqtr4id | ⊢ ( 𝜑  →  𝑅  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝜑  →  ( 1  ·  𝑅 )  =  ( 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) ) ) | 
						
							| 51 | 1 2 3 4 5 | iblcnlem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( 𝑅  ∈  ℝ  ∧  𝑆  ∈  ℝ )  ∧  ( 𝑇  ∈  ℝ  ∧  𝑈  ∈  ℝ ) ) ) ) | 
						
							| 52 | 6 51 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( 𝑅  ∈  ℝ  ∧  𝑆  ∈  ℝ )  ∧  ( 𝑇  ∈  ℝ  ∧  𝑈  ∈  ℝ ) ) ) | 
						
							| 53 | 52 | simp2d | ⊢ ( 𝜑  →  ( 𝑅  ∈  ℝ  ∧  𝑆  ∈  ℝ ) ) | 
						
							| 54 | 53 | simpld | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 55 | 54 | recnd | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 56 | 55 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝑅 )  =  𝑅 ) | 
						
							| 57 | 50 56 | eqtr3d | ⊢ ( 𝜑  →  ( 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) )  =  𝑅 ) | 
						
							| 58 | 57 55 | eqeltrd | ⊢ ( 𝜑  →  ( 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) )  ∈  ℂ ) | 
						
							| 59 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( i ↑ 𝑘 )  =  ( i ↑ 0 ) ) | 
						
							| 60 |  | exp0 | ⊢ ( i  ∈  ℂ  →  ( i ↑ 0 )  =  1 ) | 
						
							| 61 | 16 60 | ax-mp | ⊢ ( i ↑ 0 )  =  1 | 
						
							| 62 | 59 61 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( i ↑ 𝑘 )  =  1 ) | 
						
							| 63 | 61 | itgvallem | ⊢ ( 𝑘  =  0  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) ) | 
						
							| 64 | 62 63 | oveq12d | ⊢ ( 𝑘  =  0  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) ) ) | 
						
							| 65 | 64 | fsum1 | ⊢ ( ( 0  ∈  ℤ  ∧  ( 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) )  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) ) ) | 
						
							| 66 | 40 58 65 | sylancr | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  1 ) ) ,  0 ) ) ) ) ) | 
						
							| 67 | 66 57 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  𝑅 ) | 
						
							| 68 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 69 | 67 68 | jctil | ⊢ ( 𝜑  →  ( 0  ∈  ℕ0  ∧  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  𝑅 ) ) | 
						
							| 70 |  | imval | ⊢ ( 𝐵  ∈  ℂ  →  ( ℑ ‘ 𝐵 )  =  ( ℜ ‘ ( 𝐵  /  i ) ) ) | 
						
							| 71 | 43 70 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  =  ( ℜ ‘ ( 𝐵  /  i ) ) ) | 
						
							| 72 | 71 | ibllem | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  i ) ) ,  0 ) ) | 
						
							| 73 | 72 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  i ) ) ,  0 ) ) ) | 
						
							| 74 | 73 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  i ) ) ,  0 ) ) ) ) | 
						
							| 75 | 3 74 | eqtr2id | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  i ) ) ,  0 ) ) )  =  𝑇 ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( 𝜑  →  ( i  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  i ) ) ,  0 ) ) ) )  =  ( i  ·  𝑇 ) ) | 
						
							| 77 | 76 | oveq2d | ⊢ ( 𝜑  →  ( 𝑅  +  ( i  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  i ) ) ,  0 ) ) ) ) )  =  ( 𝑅  +  ( i  ·  𝑇 ) ) ) | 
						
							| 78 | 9 33 39 26 69 77 | fsump1i | ⊢ ( 𝜑  →  ( 1  ∈  ℕ0  ∧  Σ 𝑘  ∈  ( 0 ... 1 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( 𝑅  +  ( i  ·  𝑇 ) ) ) ) | 
						
							| 79 | 43 | renegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ - 𝐵 )  =  - ( ℜ ‘ 𝐵 ) ) | 
						
							| 80 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 81 | 80 | negnegi | ⊢ - - 1  =  1 | 
						
							| 82 | 81 | oveq2i | ⊢ ( - 𝐵  /  - - 1 )  =  ( - 𝐵  /  1 ) | 
						
							| 83 | 43 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ∈  ℂ ) | 
						
							| 84 | 83 | div1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - 𝐵  /  1 )  =  - 𝐵 ) | 
						
							| 85 | 82 84 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - 𝐵  /  - - 1 )  =  - 𝐵 ) | 
						
							| 86 | 80 | negcli | ⊢ - 1  ∈  ℂ | 
						
							| 87 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 88 |  | div2neg | ⊢ ( ( 𝐵  ∈  ℂ  ∧  - 1  ∈  ℂ  ∧  - 1  ≠  0 )  →  ( - 𝐵  /  - - 1 )  =  ( 𝐵  /  - 1 ) ) | 
						
							| 89 | 86 87 88 | mp3an23 | ⊢ ( 𝐵  ∈  ℂ  →  ( - 𝐵  /  - - 1 )  =  ( 𝐵  /  - 1 ) ) | 
						
							| 90 | 43 89 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - 𝐵  /  - - 1 )  =  ( 𝐵  /  - 1 ) ) | 
						
							| 91 | 85 90 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  =  ( 𝐵  /  - 1 ) ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ - 𝐵 )  =  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) | 
						
							| 93 | 79 92 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ 𝐵 )  =  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) | 
						
							| 94 | 93 | ibllem | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) | 
						
							| 95 | 94 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) | 
						
							| 96 | 95 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) ) | 
						
							| 97 | 2 96 | eqtrid | ⊢ ( 𝜑  →  𝑆  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) ) | 
						
							| 98 | 97 | oveq2d | ⊢ ( 𝜑  →  ( - 1  ·  𝑆 )  =  ( - 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) ) ) | 
						
							| 99 | 53 | simprd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 100 | 99 | recnd | ⊢ ( 𝜑  →  𝑆  ∈  ℂ ) | 
						
							| 101 | 100 | mulm1d | ⊢ ( 𝜑  →  ( - 1  ·  𝑆 )  =  - 𝑆 ) | 
						
							| 102 | 98 101 | eqtr3d | ⊢ ( 𝜑  →  ( - 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) )  =  - 𝑆 ) | 
						
							| 103 | 102 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑅  +  ( i  ·  𝑇 ) )  +  ( - 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) ) )  =  ( ( 𝑅  +  ( i  ·  𝑇 ) )  +  - 𝑆 ) ) | 
						
							| 104 | 52 | simp3d | ⊢ ( 𝜑  →  ( 𝑇  ∈  ℝ  ∧  𝑈  ∈  ℝ ) ) | 
						
							| 105 | 104 | simpld | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 106 | 105 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 107 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( i  ·  𝑇 )  ∈  ℂ ) | 
						
							| 108 | 16 106 107 | sylancr | ⊢ ( 𝜑  →  ( i  ·  𝑇 )  ∈  ℂ ) | 
						
							| 109 | 55 108 | addcld | ⊢ ( 𝜑  →  ( 𝑅  +  ( i  ·  𝑇 ) )  ∈  ℂ ) | 
						
							| 110 | 109 100 | negsubd | ⊢ ( 𝜑  →  ( ( 𝑅  +  ( i  ·  𝑇 ) )  +  - 𝑆 )  =  ( ( 𝑅  +  ( i  ·  𝑇 ) )  −  𝑆 ) ) | 
						
							| 111 | 55 108 100 | addsubd | ⊢ ( 𝜑  →  ( ( 𝑅  +  ( i  ·  𝑇 ) )  −  𝑆 )  =  ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) ) ) | 
						
							| 112 | 103 110 111 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑅  +  ( i  ·  𝑇 ) )  +  ( - 1  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - 1 ) ) ,  0 ) ) ) ) )  =  ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) ) ) | 
						
							| 113 | 9 27 32 26 78 112 | fsump1i | ⊢ ( 𝜑  →  ( 2  ∈  ℕ0  ∧  Σ 𝑘  ∈  ( 0 ... 2 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) ) ) ) | 
						
							| 114 |  | imval | ⊢ ( - 𝐵  ∈  ℂ  →  ( ℑ ‘ - 𝐵 )  =  ( ℜ ‘ ( - 𝐵  /  i ) ) ) | 
						
							| 115 | 83 114 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ - 𝐵 )  =  ( ℜ ‘ ( - 𝐵  /  i ) ) ) | 
						
							| 116 | 43 | imnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ - 𝐵 )  =  - ( ℑ ‘ 𝐵 ) ) | 
						
							| 117 | 16 | negnegi | ⊢ - - i  =  i | 
						
							| 118 | 117 | eqcomi | ⊢ i  =  - - i | 
						
							| 119 | 118 | oveq2i | ⊢ ( - 𝐵  /  i )  =  ( - 𝐵  /  - - i ) | 
						
							| 120 | 16 | negcli | ⊢ - i  ∈  ℂ | 
						
							| 121 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 122 | 16 121 | negne0i | ⊢ - i  ≠  0 | 
						
							| 123 |  | div2neg | ⊢ ( ( 𝐵  ∈  ℂ  ∧  - i  ∈  ℂ  ∧  - i  ≠  0 )  →  ( - 𝐵  /  - - i )  =  ( 𝐵  /  - i ) ) | 
						
							| 124 | 120 122 123 | mp3an23 | ⊢ ( 𝐵  ∈  ℂ  →  ( - 𝐵  /  - - i )  =  ( 𝐵  /  - i ) ) | 
						
							| 125 | 43 124 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - 𝐵  /  - - i )  =  ( 𝐵  /  - i ) ) | 
						
							| 126 | 119 125 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - 𝐵  /  i )  =  ( 𝐵  /  - i ) ) | 
						
							| 127 | 126 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( - 𝐵  /  i ) )  =  ( ℜ ‘ ( 𝐵  /  - i ) ) ) | 
						
							| 128 | 115 116 127 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ 𝐵 )  =  ( ℜ ‘ ( 𝐵  /  - i ) ) ) | 
						
							| 129 | 128 | ibllem | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) | 
						
							| 130 | 129 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) ) | 
						
							| 131 | 130 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) ) ) | 
						
							| 132 | 4 131 | eqtrid | ⊢ ( 𝜑  →  𝑈  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) ) ) | 
						
							| 133 | 132 | oveq2d | ⊢ ( 𝜑  →  ( - i  ·  𝑈 )  =  ( - i  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) ) ) ) | 
						
							| 134 | 104 | simprd | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 135 | 134 | recnd | ⊢ ( 𝜑  →  𝑈  ∈  ℂ ) | 
						
							| 136 |  | mulneg12 | ⊢ ( ( i  ∈  ℂ  ∧  𝑈  ∈  ℂ )  →  ( - i  ·  𝑈 )  =  ( i  ·  - 𝑈 ) ) | 
						
							| 137 | 16 135 136 | sylancr | ⊢ ( 𝜑  →  ( - i  ·  𝑈 )  =  ( i  ·  - 𝑈 ) ) | 
						
							| 138 | 133 137 | eqtr3d | ⊢ ( 𝜑  →  ( - i  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) ) )  =  ( i  ·  - 𝑈 ) ) | 
						
							| 139 | 138 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) )  +  ( - i  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  - i ) ) ) ,  ( ℜ ‘ ( 𝐵  /  - i ) ) ,  0 ) ) ) ) )  =  ( ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) )  +  ( i  ·  - 𝑈 ) ) ) | 
						
							| 140 | 9 10 15 26 113 139 | fsump1i | ⊢ ( 𝜑  →  ( 3  ∈  ℕ0  ∧  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) )  +  ( i  ·  - 𝑈 ) ) ) ) | 
						
							| 141 | 140 | simprd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) )  +  ( i  ·  - 𝑈 ) ) ) | 
						
							| 142 | 8 141 | eqtrid | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) )  +  ( i  ·  - 𝑈 ) ) ) | 
						
							| 143 | 55 100 | subcld | ⊢ ( 𝜑  →  ( 𝑅  −  𝑆 )  ∈  ℂ ) | 
						
							| 144 | 135 | negcld | ⊢ ( 𝜑  →  - 𝑈  ∈  ℂ ) | 
						
							| 145 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  - 𝑈  ∈  ℂ )  →  ( i  ·  - 𝑈 )  ∈  ℂ ) | 
						
							| 146 | 16 144 145 | sylancr | ⊢ ( 𝜑  →  ( i  ·  - 𝑈 )  ∈  ℂ ) | 
						
							| 147 | 143 108 146 | addassd | ⊢ ( 𝜑  →  ( ( ( 𝑅  −  𝑆 )  +  ( i  ·  𝑇 ) )  +  ( i  ·  - 𝑈 ) )  =  ( ( 𝑅  −  𝑆 )  +  ( ( i  ·  𝑇 )  +  ( i  ·  - 𝑈 ) ) ) ) | 
						
							| 148 | 17 106 144 | adddid | ⊢ ( 𝜑  →  ( i  ·  ( 𝑇  +  - 𝑈 ) )  =  ( ( i  ·  𝑇 )  +  ( i  ·  - 𝑈 ) ) ) | 
						
							| 149 | 106 135 | negsubd | ⊢ ( 𝜑  →  ( 𝑇  +  - 𝑈 )  =  ( 𝑇  −  𝑈 ) ) | 
						
							| 150 | 149 | oveq2d | ⊢ ( 𝜑  →  ( i  ·  ( 𝑇  +  - 𝑈 ) )  =  ( i  ·  ( 𝑇  −  𝑈 ) ) ) | 
						
							| 151 | 148 150 | eqtr3d | ⊢ ( 𝜑  →  ( ( i  ·  𝑇 )  +  ( i  ·  - 𝑈 ) )  =  ( i  ·  ( 𝑇  −  𝑈 ) ) ) | 
						
							| 152 | 151 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑅  −  𝑆 )  +  ( ( i  ·  𝑇 )  +  ( i  ·  - 𝑈 ) ) )  =  ( ( 𝑅  −  𝑆 )  +  ( i  ·  ( 𝑇  −  𝑈 ) ) ) ) | 
						
							| 153 | 142 147 152 | 3eqtrd | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ( 𝑅  −  𝑆 )  +  ( i  ·  ( 𝑇  −  𝑈 ) ) ) ) |