Metamath Proof Explorer


Theorem itgcnval

Description: Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itgcnval.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
itgcnval.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )
Assertion itgcnval ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 itgcnval.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
2 itgcnval.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )
3 eqid ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) )
4 eqid ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) )
5 eqid ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) )
6 eqid ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) )
7 3 4 5 6 1 2 itgcnlem ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ) + ( i · ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ) ) ) )
8 iblmbf ( ( 𝑥𝐴𝐵 ) ∈ 𝐿1 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
9 2 8 syl ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
10 9 1 mbfmptcl ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
11 10 recld ( ( 𝜑𝑥𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ )
12 10 iblcn ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) )
13 2 12 mpbid ( 𝜑 → ( ( 𝑥𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) )
14 13 simpld ( 𝜑 → ( 𝑥𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 )
15 11 14 itgrevallem1 ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ) )
16 10 imcld ( ( 𝜑𝑥𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ )
17 13 simprd ( 𝜑 → ( 𝑥𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 )
18 16 17 itgrevallem1 ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ) )
19 18 oveq2d ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( i · ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ) ) )
20 15 19 oveq12d ( 𝜑 → ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ) + ( i · ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ) ) ) )
21 7 20 eqtr4d ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) )