| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑦  =  ( ℜ ‘ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑦  =  ( ℜ ‘ 𝐵 ) ) | 
						
							| 2 | 1 | itgeq2dv | ⊢ ( 𝑦  =  ( ℜ ‘ 𝐵 )  →  ∫ 𝐴 𝑦  d 𝑥  =  ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥 ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑦  =  ( ℜ ‘ 𝐵 )  →  ( 𝑦  ·  ( vol ‘ 𝐴 ) )  =  ( ( ℜ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 4 | 2 3 | eqeq12d | ⊢ ( 𝑦  =  ( ℜ ‘ 𝐵 )  →  ( ∫ 𝐴 𝑦  d 𝑥  =  ( 𝑦  ·  ( vol ‘ 𝐴 ) )  ↔  ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  =  ( ( ℜ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) ) ) ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 6 |  | fconstmpt | ⊢ ( 𝐴  ×  { 𝑦 } )  =  ( 𝑥  ∈  𝐴  ↦  𝑦 ) | 
						
							| 7 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  𝐴  ∈  dom  vol ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℂ ) | 
						
							| 12 |  | iblconst | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝑦  ∈  ℂ )  →  ( 𝐴  ×  { 𝑦 } )  ∈  𝐿1 ) | 
						
							| 13 | 7 9 11 12 | syl3anc | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐴  ×  { 𝑦 } )  ∈  𝐿1 ) | 
						
							| 14 | 6 13 | eqeltrrid | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  ∈  𝐴  ↦  𝑦 )  ∈  𝐿1 ) | 
						
							| 15 | 5 14 | itgrevallem1 | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ∫ 𝐴 𝑦  d 𝑥  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝑦 ) ,  - 𝑦 ,  0 ) ) ) ) ) | 
						
							| 16 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ,  0 ) | 
						
							| 17 | 16 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ,  0 ) ) | 
						
							| 18 | 17 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ,  0 ) ) ) | 
						
							| 19 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 20 |  | ifcl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℝ ) | 
						
							| 21 | 10 19 20 | sylancl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℝ ) | 
						
							| 22 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ) | 
						
							| 23 | 19 10 22 | sylancr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ) | 
						
							| 24 |  | elrege0 | ⊢ ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ( 0 [,) +∞ )  ↔  ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ) ) | 
						
							| 25 | 21 23 24 | sylanbrc | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 26 |  | itg2const | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ( 0 [,) +∞ ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ,  0 ) ) )  =  ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 27 | 7 9 25 26 | syl3anc | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ,  0 ) ) )  =  ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 28 | 18 27 | eqtrid | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  =  ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 29 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝑦 ) ,  - 𝑦 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) ,  0 ) | 
						
							| 30 | 29 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝑦 ) ,  - 𝑦 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) ,  0 ) ) | 
						
							| 31 | 30 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝑦 ) ,  - 𝑦 ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) ,  0 ) ) ) | 
						
							| 32 |  | renegcl | ⊢ ( 𝑦  ∈  ℝ  →  - 𝑦  ∈  ℝ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  - 𝑦  ∈  ℝ ) | 
						
							| 34 |  | ifcl | ⊢ ( ( - 𝑦  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ∈  ℝ ) | 
						
							| 35 | 33 19 34 | sylancl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ∈  ℝ ) | 
						
							| 36 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝑦  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) ) | 
						
							| 37 | 19 33 36 | sylancr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) ) | 
						
							| 38 |  | elrege0 | ⊢ ( if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ∈  ( 0 [,) +∞ )  ↔  ( if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) ) ) | 
						
							| 39 | 35 37 38 | sylanbrc | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 40 |  | itg2const | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ∈  ( 0 [,) +∞ ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) ,  0 ) ) )  =  ( if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 41 | 7 9 39 40 | syl3anc | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) ,  0 ) ) )  =  ( if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 42 | 31 41 | eqtrid | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝑦 ) ,  - 𝑦 ,  0 ) ) )  =  ( if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 43 | 28 42 | oveq12d | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝑦 ) ,  - 𝑦 ,  0 ) ) ) )  =  ( ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) )  −  ( if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) ) ) ) | 
						
							| 44 | 21 | recnd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℂ ) | 
						
							| 45 | 35 | recnd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ∈  ℂ ) | 
						
							| 46 | 8 | recnd | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( vol ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( vol ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 48 | 44 45 47 | subdird | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  −  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) )  ·  ( vol ‘ 𝐴 ) )  =  ( ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) )  −  ( if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 )  ·  ( vol ‘ 𝐴 ) ) ) ) | 
						
							| 49 |  | max0sub | ⊢ ( 𝑦  ∈  ℝ  →  ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  −  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) )  =  𝑦 ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  −  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) )  =  𝑦 ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  −  if ( 0  ≤  - 𝑦 ,  - 𝑦 ,  0 ) )  ·  ( vol ‘ 𝐴 ) )  =  ( 𝑦  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 52 | 43 48 51 | 3eqtr2rd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  ·  ( vol ‘ 𝐴 ) )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝑦 ) ,  - 𝑦 ,  0 ) ) ) ) ) | 
						
							| 53 | 15 52 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℝ )  →  ∫ 𝐴 𝑦  d 𝑥  =  ( 𝑦  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ∀ 𝑦  ∈  ℝ ∫ 𝐴 𝑦  d 𝑥  =  ( 𝑦  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 55 |  | recl | ⊢ ( 𝐵  ∈  ℂ  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 56 | 55 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 57 | 4 54 56 | rspcdva | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  =  ( ( ℜ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 58 |  | simpl | ⊢ ( ( 𝑦  =  ( ℑ ‘ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑦  =  ( ℑ ‘ 𝐵 ) ) | 
						
							| 59 | 58 | itgeq2dv | ⊢ ( 𝑦  =  ( ℑ ‘ 𝐵 )  →  ∫ 𝐴 𝑦  d 𝑥  =  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) | 
						
							| 60 |  | oveq1 | ⊢ ( 𝑦  =  ( ℑ ‘ 𝐵 )  →  ( 𝑦  ·  ( vol ‘ 𝐴 ) )  =  ( ( ℑ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 61 | 59 60 | eqeq12d | ⊢ ( 𝑦  =  ( ℑ ‘ 𝐵 )  →  ( ∫ 𝐴 𝑦  d 𝑥  =  ( 𝑦  ·  ( vol ‘ 𝐴 ) )  ↔  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  =  ( ( ℑ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) ) ) ) | 
						
							| 62 |  | imcl | ⊢ ( 𝐵  ∈  ℂ  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 63 | 62 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 64 | 61 54 63 | rspcdva | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  =  ( ( ℑ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 65 | 64 | oveq2d | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  =  ( i  ·  ( ( ℑ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) ) ) ) | 
						
							| 66 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 67 | 66 | a1i | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  i  ∈  ℂ ) | 
						
							| 68 | 63 | recnd | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( ℑ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 69 | 67 68 46 | mulassd | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( ( i  ·  ( ℑ ‘ 𝐵 ) )  ·  ( vol ‘ 𝐴 ) )  =  ( i  ·  ( ( ℑ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) ) ) ) | 
						
							| 70 | 65 69 | eqtr4d | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  =  ( ( i  ·  ( ℑ ‘ 𝐵 ) )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 71 | 57 70 | oveq12d | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) )  =  ( ( ( ℜ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) )  +  ( ( i  ·  ( ℑ ‘ 𝐵 ) )  ·  ( vol ‘ 𝐴 ) ) ) ) | 
						
							| 72 | 56 | recnd | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( ℜ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 73 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ( ℑ ‘ 𝐵 )  ∈  ℂ )  →  ( i  ·  ( ℑ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 74 | 66 68 73 | sylancr | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( i  ·  ( ℑ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 75 | 72 74 46 | adddird | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) )  ·  ( vol ‘ 𝐴 ) )  =  ( ( ( ℜ ‘ 𝐵 )  ·  ( vol ‘ 𝐴 ) )  +  ( ( i  ·  ( ℑ ‘ 𝐵 ) )  ·  ( vol ‘ 𝐴 ) ) ) ) | 
						
							| 76 | 71 75 | eqtr4d | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) )  =  ( ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 77 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 78 |  | fconstmpt | ⊢ ( 𝐴  ×  { 𝐵 } )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 79 |  | iblconst | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  ×  { 𝐵 } )  ∈  𝐿1 ) | 
						
							| 80 | 78 79 | eqeltrrid | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 81 | 77 80 | itgcnval | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) ) | 
						
							| 82 |  | replim | ⊢ ( 𝐵  ∈  ℂ  →  𝐵  =  ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 83 | 82 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  𝐵  =  ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 84 | 83 | oveq1d | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  ·  ( vol ‘ 𝐴 ) )  =  ( ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) )  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 85 | 76 81 84 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℂ )  →  ∫ 𝐴 𝐵  d 𝑥  =  ( 𝐵  ·  ( vol ‘ 𝐴 ) ) ) |