Metamath Proof Explorer


Theorem itgeq1d

Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis itgeq1d.aeqb ( 𝜑𝐴 = 𝐵 )
Assertion itgeq1d ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 )

Proof

Step Hyp Ref Expression
1 itgeq1d.aeqb ( 𝜑𝐴 = 𝐵 )
2 itgeq1 ( 𝐴 = 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 )
3 1 2 syl ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 )