Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | itgeq1d.aeqb | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | itgeq1d | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgeq1d.aeqb | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | itgeq1 | ⊢ ( 𝐴 = 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) |